Polarized Radiative Transfer in a Multi-Layer Medium Subject to Fresnel Boundary and Interface Conditions

Roberto D. M. Garcia

Instituto de Estudos Avançados
São José dos Campos, SP, Brazil
E-mail: rdgarcia@ieav.cta.br
Objective

- To develop a discrete-ordinates solution for polarized radiative transfer driven by a uniform beam of parallel rays that is incident obliquely on a multi-layer medium
- The index of refraction is taken to be layer-dependent, so Fresnel boundary and interface conditions are required in the formulation
- A general form of the phase matrix is considered (also layer-dependent)

Applications

- Modeling of the atmosphere-ocean system
- Biomedical optics
- Remote sensing
The Radiative Transfer Equation (RTE)

For each of the layers $k = 1, 2, \ldots, K$:

$$\mu \frac{\partial}{\partial \tau} I_k(\tau, \mu, \phi) + I_k(\tau, \mu, \phi) = \frac{\varpi_k}{4\pi} \int_{-1}^{1} \int_{0}^{2\pi} P_k(\mu, \mu', \phi - \phi') I_k(\tau, \mu', \phi') \, d\phi' \, d\mu' \quad (1)$$

$\tau \in (a_{k-1}, a_k)$: optical variable that defines the position in layer k

$\mu \in [-1, 1]$: cosine of the polar angle θ

$\phi \in [0, 2\pi]$: azimuthal angle

ϖ_k: single-scattering albedo for layer k

$P_k(\mu, \mu', \phi - \phi')$: phase matrix for layer k

The Stokes vector $I(\tau, \mu, \phi)$ has the four Stokes parameters as components:

$$I(\tau, \mu, \phi) = \left(\begin{array}{c} I(\tau, \mu, \phi) \\ Q(\tau, \mu, \phi) \\ U(\tau, \mu, \phi) \\ V(\tau, \mu, \phi) \end{array} \right) \quad (2)$$
The Phase Matrix

We consider a general form for the phase matrix (Siewert, 1982):

\[
P_k(\mu, \mu', \phi - \phi') = \frac{1}{2} \sum_{m=0}^{L} (2 - \delta_{0,m})[C_k^m(\mu, \mu') \cos m(\phi - \phi') + S_k^m(\mu, \mu') \sin m(\phi - \phi')],
\]

where

\[
C_k^m(\mu, \mu') = A_k^m(\mu, \mu') + DA_k^m(\mu, \mu')D
\]

and

\[
S_k^m(\mu, \mu') = A_k^m(\mu, \mu')D - DA_k^m(\mu, \mu').
\]

In these expressions, \(D = \text{diag}\{1, 1, -1, -1\}\) and

\[
A_k^m(\mu, \mu') = \sum_{l=m}^{L} P_l^m(\mu)B_lP_l^m(\mu'),
\]

where

\[
B_l = \begin{pmatrix}
\beta_l & \gamma_l & 0 & 0 \\
\gamma_l & \alpha_l & 0 & 0 \\
0 & 0 & \zeta_l & -\epsilon_l \\
0 & 0 & \epsilon_l & \delta_l
\end{pmatrix}
\]

and

\[
P_l^m(\mu) = \begin{pmatrix}
P_l^m(\mu) & 0 & 0 & 0 \\
0 & R_l^m(\mu) & -T_l^m(\mu) & 0 \\
0 & -T_l^m(\mu) & R_l^m(\mu) & 0 \\
0 & 0 & 0 & P_l^m(\mu)
\end{pmatrix}.
\]

\{\alpha_l, \beta_l, \gamma_l, \delta_l, \epsilon_l, \zeta_l\}: Greek constants

\(P_l^m(\mu)\): normalized version of the associated Legendre function of the first kind

\(R_l^m(\mu)\) and \(T_l^m(\mu)\): given in terms of the generalized spherical functions \(P_{m,-2}(\mu)\) and \(P_{m,2}(\mu)\)
Fresnel Boundary and Interface Conditions

Consider a beam of parallel rays described by the Stokes parameters

\[F = \begin{pmatrix} F_I \\ F_Q \\ F_U \\ F_V \end{pmatrix} \] \hspace{1cm} (7)

traveling in an external medium \(\tau < a_0 \) characterized by an index of refraction \(n_0 \) towards the surface located at \(\tau = a_0 \) along a direction defined by \((\mu_0, \phi_0) \).

The boundary condition for the first layer is

\[I_1(a_0, \mu, \phi) = X(n_{1,0}, \mu)I_1(a_0, -\mu, \phi) + Y(n_{1,0}, \mu)F \delta[f(n_{1,0}, \mu) - \mu_0] \delta(\phi - \phi_0), \] \hspace{1cm} (8)

for \(\mu \in (0, 1] \) and \(\phi \in [0, 2\pi] \).

General definitions:

\[n_{k,k'} = n_k/n_{k'} \] \hspace{1cm} (9)

\[f(n, \mu) = [1 - n^2(1 - \mu^2)]^{1/2} \] \hspace{1cm} (10)

\(X(n_{k,k'}, \mu) \) is the reflection matrix by layer \(k' \) for radiation coming from layer \(k \).

\(Y(n_{k,k'}, \mu) \) is the transmission matrix for radiation from layer \(k' \) to layer \(k \).
Fresnel Boundary and Interface Conditions (cont.)

The reflection and transmission matrices:

\[X(n, \mu) = \begin{cases} \mathbf{G}(n, \mu), & n \leq 1, \\ \mathbf{G}(n, \mu)H[\mu - \mu_c(n)] + \mathbf{\Gamma}(n, \mu)\{1 - H[\mu - \mu_c(n)]\}, & n \geq 1, \end{cases} \] \hspace{1cm} (11a)

\[Y(n, \mu) = \begin{cases} \mathbf{D}(n, \mu), & n \leq 1, \\ \mathbf{D}(n, \mu)H[\mu - \mu_c(n)], & n \geq 1. \end{cases} \] \hspace{1cm} (11b)

where \(H(x) \) is the Heaviside function and \(\mu_c(n) = (1 - 1/n^2)^{1/2} \) is the cosine of the critical angle,

\[\mathbf{G}(n, \mu) = \frac{1}{2} \begin{pmatrix} \frac{\mu - n f(n, \mu)}{\mu + n f(n, \mu)} \frac{\mu - n f(n, \mu)}{\mu + n f(n, \mu)} \frac{\mu - n f(n, \mu)}{\mu + n f(n, \mu)} \frac{n \mu f(n, \mu)}{n \mu f(n, \mu)} \\ \frac{n \mu f(n, \mu)}{n \mu f(n, \mu)} \frac{\mu - n f(n, \mu)}{\mu + n f(n, \mu)} \frac{n \mu f(n, \mu)}{n \mu f(n, \mu)} \frac{\mu - n f(n, \mu)}{\mu + n f(n, \mu)} \\ \frac{\mu - n f(n, \mu)}{\mu + n f(n, \mu)} \frac{\mu - n f(n, \mu)}{\mu + n f(n, \mu)} \frac{\mu - n f(n, \mu)}{\mu + n f(n, \mu)} \frac{n \mu f(n, \mu)}{n \mu f(n, \mu)} \\ 0 \end{pmatrix} \] \hspace{1cm} (12)

\[\mathbf{\Gamma}(n, \mu) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 \frac{2(1 - \mu^2)^2}{1 - (1 + 1/n^2)\mu^2} - 1 & -2\mu(1 - \mu^2)[\mu^2(n - \mu^2)^{1/2}] & 0 \\ 0 & 0 \frac{2\mu(1 - \mu^2)[\mu^2(n - \mu^2)^{1/2}]}{1 - (1 + 1/n^2)\mu^2} & \frac{2(1 - \mu^2)^2}{1 - (1 + 1/n^2)\mu^2} - 1 \end{pmatrix} \] \hspace{1cm} (13)
Fresnel Boundary and Interface Conditions (cont.)

\[
\mathbf{D}(n, \mu) = 2n^3 \mu f(n, \mu) \begin{pmatrix}
\frac{1}{[\mu+nf(n,\mu)]^2} & \frac{1}{\mu+nf(n,\mu)} & \frac{1}{[\mu+nf(n,\mu)]^2} & \frac{1}{\mu+nf(n,\mu)} & 0 & 0 \\
\frac{1}{[\mu+nf(n,\mu)]^2} & \frac{1}{\mu+nf(n,\mu)} & \frac{1}{[\mu+nf(n,\mu)]^2} & \frac{1}{\mu+nf(n,\mu)} & 0 & 0 \\
0 & 0 & \frac{2}{[\mu+nf(n,\mu)]^2} & \frac{2}{\mu+nf(n,\mu)} & 0 & 0 \\
0 & 0 & 0 & \frac{2}{[\mu+nf(n,\mu)]^2} & \frac{2}{\mu+nf(n,\mu)} & 0 \\
\end{pmatrix}
\]

(14)

At the interfaces, the conditions couple adjacent layers:

\[
\mathbf{I}_k(a_k, -\mu, \phi) = \mathbf{X}(n_{k,k+1}, \mu)\mathbf{I}_k(a_k, \mu, \phi) + \mathbf{Y}(n_{k,k+1}, \mu)\mathbf{I}_{k+1}[a_k, -f(n_{k,k+1}, \mu), \phi]
\]

(15a)

and

\[
\mathbf{I}_{k+1}(a_k, \mu, \phi) = \mathbf{X}(n_{k+1,k}, \mu)\mathbf{I}_{k+1}(a_k, -\mu, \phi) + \mathbf{Y}(n_{k+1,k}, \mu)\mathbf{I}_k[a_k, f(n_{k+1,k}, \mu), \phi],
\]

(15b)

for \(\mu \in (0, 1] \) and \(\phi \in [0, 2\pi] \), and \(k = 1, 2, \ldots, K - 1 \).

At the surface of the last layer (\(\tau = a_K \)), we assume that there is no radiation coming from an external medium (\(\tau > a_K \)) with index of refraction \(n_{K+1} \) and so we get

\[
\mathbf{I}_K(a_K, -\mu, \phi) = \mathbf{X}(n_{K,K+1}, \mu)\mathbf{I}_K(a_K, \mu, \phi), \quad \text{for } \mu \in (0, 1] \text{ and } \phi \in [0, 2\pi].
\]

(16)

The difficulty caused by the polar angle shift in the transmission terms is overcome by what we call “pre-processing of the interface conditions”.

Pre-processing involves algebraic manipulations of the boundary/interface conditions and the RTE. See details for the scalar case in Garcia, Siewert, and Yacout (2008).
Pre-Processed Fresnel Boundary and Interface Conditions

\[I_k(a_{k-1}, \mu, \phi) - Z_k^-(\mu)I_k(a_{k-1}, -\mu, \phi) = F_k \delta(\mu - \mu_k)\delta(\phi - \phi_0) + W_k^- (\mu, \phi) \]
(17a)

and

\[I_k(a_k, -\mu, \phi) - Z_k^+(\mu)I_k(a_k, \mu, \phi) = W_k^+ (\mu, \phi), \]
(17b)

for \(\mu \in (0, 1], \phi \in [0, 2\pi], \) and \(k = 1, 2, \ldots, K. \)

The 4 \times 4 matrices \(Z_k^\pm(\mu) \) and the 4-vectors \(F_k \) and \(W_k^\pm(\mu, \phi) \) are defined by recurrence along the layers.

Equations (17) for a given layer are coupled by way of \(W_k^\pm(\mu, \phi) \), which depend on the Stokes vectors in the other layers.

Decomposition into Scattered and Unscattered Problems

\[I_k(\tau, \mu, \phi) = I_k^{(0)}(\tau, \mu, \phi) + I_k^{(*)}(\tau, \mu, \phi) \]
(18)

The unscattered Stokes vector is given, for \(\mu \in (0, 1] \), by

\[I_k^{(0)}(\tau, \mu, \phi) = S_k^+ e^{-(\tau - a_{k-1})/\mu} \delta(\mu - \mu_k)\delta(\phi - \phi_0) \]
(19a)

and

\[I_k^{(0)}(\tau, -\mu, \phi) = S_k^- e^{-(a_k - \tau)/\mu} \delta(\mu - \mu_k)\delta(\phi - \phi_0), \]
(19b)

where the 4-vectors \(S_k^\pm \) are defined by recurrence along the layers.
Decomposition into Scattered and Unscattered Problems (cont.)

The scattered Stokes vector must satisfy, for layers \(k = 1, 2, \ldots, K \),

\[
\frac{\partial}{\partial \tau} I_k^{(*)}(\tau, \mu, \phi) + I_k^{(*)}(\tau, \mu, \phi) = \frac{\omega_k}{4\pi} \int_{-1}^{1} \int_{0}^{2\pi} P_k(\mu, \mu', \phi - \phi') I_k^{(*)}(\tau, \mu', \phi') \, d\phi' \, d\mu' \\
+ \frac{\omega_k}{4\pi} P_k(\mu, \mu_k, \phi - \phi_0) S_k^+ e^{-(\tau - a_{k-1})/\mu_k} + \frac{\omega_k}{4\pi} P_k(\mu, -\mu_k, \phi - \phi_0) S_k^- e^{-(a_k - \tau)/\mu_k},
\]

for \(\tau \in (a_{k-1}, a_k) \), \(\mu \in [-1, 1] \) and \(\phi \in [0, 2\pi] \), subject to

\[
I_k^{(*)}(a_{k-1}, \mu, \phi) - Z_k^-(\mu) I_k^{(*)}(a_{k-1}, -\mu, \phi) = W_k^- (\mu, \phi)
\]

and

\[
I_k^{(*)}(a_k, -\mu, \phi) - Z_k^+(\mu) I_k^{(*)}(a_k, \mu, \phi) = W_k^+ (\mu, \phi),
\]

for \(\mu \in (0, 1] \) and \(\phi \in [0, 2\pi] \).

- The \(\phi \)-dependence of the scattered problem can be treated with a Fourier decomposition in terms of sines and cosines
- In principle, the source terms that come from the unscattered solution introduce the need for particular solutions but we were able to circumvent this
Fourier Decomposition of the Scattered Problem

Noting that the phase matrix can also be expressed as

\[
P(\mu, \mu', \phi - \phi') = \sum_{m=0}^{L} \sum_{\alpha=1}^{2} \Phi_{\alpha}^{m}(\phi - \phi') A_{\alpha}^{m}(\mu, \mu') D_{\alpha}
\]

(22)

where \(D_{1} = \text{diag}\{1, 1, 0, 0\}, \ D_{2} = \text{diag}\{0, 0, 1, 1\}, \)

\[
\Phi_{1}^{m}(\phi) = (2 - \delta_{0,m}) \text{diag}\{\cos m\phi, \cos m\phi, \sin m\phi, \sin m\phi\}
\]

(23a)

and

\[
\Phi_{2}^{m}(\phi) = (2 - \delta_{0,m}) \text{diag}\{-\sin m\phi, -\sin m\phi, \cos m\phi, \cos m\phi\},
\]

(23b)

we propose, for \(\mu \in (0, 1] \),

\[
I_{k}^{(\tau, \mu, \phi)} = \frac{1}{2\pi} \sum_{m=0}^{L} \sum_{\alpha=1}^{2} \Phi_{\alpha}^{m}(\phi - \phi_{0})\left[I_{k,\alpha}^{m}(\tau, \mu) - D_{\alpha} S_{k}^{\pm} e^{-\left(\tau - a_{k-1}\right)/\mu_{k}}\delta(\mu - \mu_{k})\right]
\]

(24a)

and

\[
I_{k}^{(\tau, -\mu, \phi)} = \frac{1}{2\pi} \sum_{m=0}^{L} \sum_{\alpha=1}^{2} \Phi_{\alpha}^{m}(\phi - \phi_{0})\left[I_{k,\alpha}^{m}(\tau, -\mu) - D_{\alpha} S_{k}^{-} e^{-\left(a_{k-1} - \tau\right)/\mu_{k}}\delta(\mu - \mu_{k})\right].
\]

(24b)

We get \(2(L + 1)\) azimuthally-independent problems for each layer.
Fourier Decomposition of the Scattered Problem (cont.)

For \(m = 0, 1, \ldots, L \) and \(\alpha = 1 \) and \(2 \), we get

\[
\mu \frac{\partial}{\partial \tau} I_{k,\alpha}^m(\tau, \mu) + I_{k,\alpha}^m(\tau, \mu) = \frac{\nu_k}{2} \int_{-1}^{1} A_k^m(\mu, \mu') I_{k,\alpha}^m(\tau, \mu') d\mu',
\]

for \(\tau \in (a_{k-1}, a_k) \) and \(\mu \in [-1, 1] \), subject to

\[
I_{k,\alpha}^m(a_{k-1}, \mu) - Z_k^- (\mu) = D_\alpha F_k \delta(\mu - \mu_k) + W_{k,m,\alpha}^-(\mu),
\]

and

\[
I_{k,\alpha}^m(a_k, -\mu) - Z_k^+ (\mu) = W_{k,m,\alpha}^+(\mu),
\]

for \(\mu \in (0, 1] \). Here, the quantities

\[
W_{k,m,\alpha}^\pm (\mu) = \frac{1}{2} (1 + \delta_{0,m}) \int_0^{2\pi} \Phi^m_\alpha (\phi - \phi_0) W_{k,m,\alpha}^\pm (\mu, \phi) d\phi
\]

couple the problems for all layers and are defined (and computed) by recurrence along the layers. The Dirac delta \(\delta(\mu - \mu_k) \) in Eq. (26a) is approximated by the rectangular nascent delta

\[
\delta_\epsilon(\mu - \mu_k) = \left\{ \begin{array}{ll}
(\mu_{\text{max}} - \mu_{\text{min}})^{-1}, & \mu_{\text{min}} \leq \mu \leq \mu_{\text{max}}, \\
0, & \text{otherwise},
\end{array} \right.
\]

where

\[
\mu_{\text{min}} = \max\{0, \mu_k - \epsilon/2\} \quad \text{and} \quad \mu_{\text{max}} = \min\{\mu_k + \epsilon/2, 1\}
\]

and \(\epsilon \) is the “narrowness” parameter.
The ADO solution

To define the quadrature to be used with the ADO method, we:

1. Split the integration interval $[-1, 1]$ into two half-range intervals $[-1, 0)$ and $(0, 1]$

2. Subdivide the interval $(0, 1]$ into smaller sub-intervals to avoid discontinuities in the derivative of Stokes vector w.r.t. μ at the interfaces. For layer k, the break points that define these sub-intervals are given by the critical cosines that obey certain conditions (Garcia, 2009)

3. Add μ_{\min} and μ_{\max} to the set of break-points

4. Use a shifted Gauss-Legendre quadrature in each sub-interval. A very low order quadrature (e.g., 2) is sufficient in the interval of support of $\delta(\mu - \mu_k)$

5. Reflect the nodes and weights used in $(0,1]$ about 0 to define the quadrature in $[-1,0)$

The composite quadrature so obtained is layer-dependent and so its order is denoted as N_k.

ADO solution in layer k for $\pm \mu_n, n = 1, 2, \ldots, N_k$:

$$I_{k,\alpha}^m(\tau, \pm \mu_n) = \sum_{j=1}^{4N_k} A_{k,j}^{\alpha,m} \Phi_k^m(\nu_j, \pm \mu_n) e^{-(\tau-a_k-1)/\nu_j} + B_{k,j}^{\alpha,m} \Phi_k^m(\nu_j, \mp \mu_n) e^{-(a_k-\tau)/\nu_j},$$

where the separation constants $\pm \nu_j$ and the elementary solutions $\Phi_k^m(\nu_j, \pm \mu_n)$ come from the solution of an eigensystem of order $4N_k$ (Siewert, 2000).
The ADO solution (cont.)

The unknown coefficients $A_{\alpha,m}^{\alpha,m}$ and $B_{\alpha,m}^{\alpha,m}$ are determined by using the ADO solution in the boundary/interface conditions for $\mu = \mu_n, n = 1, 2, \ldots, N_k$.

For each pair of (m, α), we get a linear system of order $8N_k$ for layer k:

$$
\sum_{j=1}^{4N_k} A_{\alpha,m}^{\alpha,m} \left[\Phi_k^m(\nu_j, \mu_n) - Z_k^- (\mu_n) D \Phi_k^m(\nu_j, -\mu_n) \right] + \sum_{j=1}^{4N_k} B_{\alpha,m}^{\alpha,m} \left[\Phi_k^m(\nu_j, -\mu_n) - Z_k^- (\mu_n) D \Phi_k^m(\nu_j, \mu_n) \right] e^{-\frac{(a_k-a_{k-1})}{\nu_j}} = D_\alpha F_k \delta_\epsilon (\mu_n - \mu_0) + W_{k,m,\alpha}^- (\mu_n) \quad (31a)
$$

and

$$
\sum_{j=1}^{4N_k} A_{\alpha,m}^{\alpha,m} \left[D \Phi_k^m(\nu_j, -\mu_n) - Z_k^+ (\mu_n) \Phi_k^m(\nu_j, \mu_n) \right] e^{-\frac{(a_k-a_{k-1})}{\nu_j}} + \sum_{j=1}^{4N_k} B_{\alpha,m}^{\alpha,m} \left[D \Phi_k^m(\nu_j, \mu_n) - Z_k^+ (\mu_n) \Phi_k^m(\nu_j, -\mu_n) \right] = W_{k,m,\alpha}^+ (\mu_n) \quad (31b)
$$

As the functions $W_{k,m,\alpha}^\pm (\mu_n)$ couple the linear systems for all the layers, solutions are found by iteration (sweeps along the layers).
Post-Processing of the ADO Solution

- Used to get a solution valid for any μ, not just at the ordinates.

- Why is this important?
 1. Layers have different ordinates.
 2. Good for computational efficiency, as it allows the use of smaller quadrature orders when $m \to L$.

Numerical Results

- There is no work in the literature with numerical results in tabular form

- Difficulty in finding realistic phase matrices for media other than atmospheres

- Synthetic 3-layer system

- Stokes vector converged to 5 figures