Analytical discrete ordinate method for radiative transfer in vegetation canopies

P. Picca
Politecnico di Torino, Torino, Italy

R. Furfaro, B. Ganapol
University of Arizona, Tucson, Arizona
Outline

- Introduction
- Radiative transfer model for canopies
 - Fundamental equations
 - Peculiarities of RT in vegetation
- Analytical Discrete Ordinate method for photon transport in canopies
- Results
- Conclusions & perspectives
Introduction

- Photon transport in dense vegetation can be described by means of Boltzmann equation if coherent scattering is disregarded.

- Main assumptions:
 - No photon/photon interaction \Rightarrow linearity
 - Remote sensing observation \Rightarrow 1D problem
 - Relative direction b/w sun and observ. angle \Rightarrow two-angle formulation
 - No frequency-shift \Rightarrow hyperspectral solution through uncoupled monoenergetic problems
 - Polarization effects (here disregarded)
Applications

- The study of the reflected light from a vegetated region can be interesting for:
 1. Remote sensing
 - E.g. detection of objects under canopies for defense and security reasons
 2. Mapping status of vegetation
 - E.g. agricultural purposes and for mapping plant physiology

=> Need of efficient and accurate simulation tools to interpret experimental measurements
Problem setting

Features:
- Dense vegetation
- Leaf as a point scatterer
- Scattering is not rotationally-invariant
- Absorption is angular dependent
Scattering features

1. Isotropic medium with anisotropic scattering

Rotationally-invariant scattering:
\[\sigma_s (\Omega' \rightarrow \Omega) = f(\Omega \cdot \Omega') \]

2. Anisotropic medium

Scattering specifically depends on inward and outward directions:
\[\sigma_s (\Omega' \rightarrow \Omega) = f(\Omega', \Omega) \]
Total cross section definition

\[\sigma(z, \Omega) = G(\Omega)u_L(z) \]

leaf density

geometric factor

optical thickness: \(\tau(z) = \int_0^z dz' u_L(z') \)

average over leaf normal distribution

\[G(\Omega) = \frac{1}{2\pi} \int_0^{2\pi} d\phi_L \int_0^1 d\mu_L g(\mu_L, \phi_L) |\Omega_L \cdot \Omega| \]

leaf angle distribution

relative angle between leaf and propagation direction

less area intercepted

stronger attenuation
Fundamental equations

- Transport equation for anisotropic media:

\[
- \mu \frac{\partial I(\tau, \Omega)}{\partial \tau} + G(\Omega) I(\tau, \Omega) = \int d\Omega' \Gamma(\Omega' \rightarrow \Omega) I(\tau, \Omega')
\]

where:

\[
\Gamma(\Omega' \rightarrow \Omega) = \frac{1}{2\pi} \int_{0}^{+1} d\mu_L g_L(\Omega_L) |\Omega_L \cdot \Omega'| f(\Omega' \rightarrow \Omega; \Omega_L)
\]

- leaf angle distribution
- relative angle between leaf and propagation direction
- for a given leaf with \(\Omega_L \), probability of deviation of particle with direction \(\Omega' \) in direction \(\Omega \)
- average over leaf normal distribution
Boundary conditions

- rigorous b.c. would include a transport model in air and in soil
- approximate b.c. can be expressed as a localized+diffuse conditions at the top of canopy (TOC) and Lambertian reflection on the bottom of canopy (BOC)

\[I(0, \Omega) = S_0 \delta(\Omega - \Omega_0) + S_d(\Omega) \]
\[I(\Delta, \Omega) = \frac{I_S}{\pi} \int_0^{2\pi} \int_0^1 d\phi' d\mu' \mu' |I(\Delta, \Omega')| \]
\[\Omega'(\mu', \phi') \]
Canopy structure

- Directionality of leaves
 - The normal directions associated to each leaf are distributed according to the leaf angle distribution (LAD)
 - LAD varies according to the vegetation species
 - planophiles tend to have horizontal leaves (e.g. oaks)
 - erectophile, vertical development (e.g. grasses)
 - LAD can also vary along depth of canopy

![Graph of leaf angle distribution](image)
Leaf model

- Leaf as a bi-Lambertian surface

- Scattering properties of leaves are characterized by the reflectance (i.e. r_L) and transmittance (i.e. t_L) as suggested by Ross (1981).

- Two-level transport model (Ganapol et al., 1992)
 1. leaf model: from leaf features, find r_L and t_L
 2. canopy model: given r_L and t_L, find canopy reflectance and transmittance

\[f(\Omega' \rightarrow \Omega; \Omega_L) = \begin{cases}
 r_L|\Omega \cdot \Omega_L|, & (\Omega \cdot \Omega_L)(\Omega' \cdot \Omega_L) < 0 \\
 t_L|\Omega \cdot \Omega_L|, & (\Omega \cdot \Omega_L)(\Omega' \cdot \Omega_L) > 0
\end{cases} \]
Leaf model

- Comparison of phase functions

- Symmetries of the scattering kernel analyzed by Picca and Furfaro (2009) in ICTT-21
Solution techniques

- Several techniques were tested in the past
 - Integral method
 - 4-flux method
 - Case’s method
 - S_N method
 - Converged S_N method
 - ...

- Problems:
 - Hypothesis and limitations
 - Accuracy
 - Computational time
Analytical Discrete Ordinate method

- Basic principle of ADO
 - Developed by Chandrasekhar and recently reformulated by Siewert et al.
 - Semi-analytical method (in space)
 - Angle variable is discretized (S_N)
 - No iteration needed for scattering term
 - Suitable for isotropic media (possibly with anisotropic scattering)
 - Two-angle solution is possible considering the Fourier expansion of the solution (one mode per Fourier component, uncoupled eqs)
Canopy analytical discrete ordinate

- Basic equations for canopies re-arranged
 - Equations for intensities in the + directions separated from that in the − directions
 - Solution in the form: \(\bar{I}_{\pm}(\tau) = \Phi_{\pm}(\nu)e^{\mp \tau/\nu} \)

- For generic cross sections and scattering function, the ADO techniques cannot be apply
 - Eigenvalue problem comes out from a combination of the two-eqs...
Canopy analytical discrete ordinate

Symmetries in p.f. and xsec definitions for canopies

\[
\frac{1}{\nu} \hat{M} \left[\Phi_+ - \Phi_- \right] = \hat{G} \left[\Phi_+ + \Phi_- \right] - \left(\hat{\Pi}_+ + \hat{\Pi}_- \right) \left[\Phi_+ + \Phi_- \right] \\
\frac{1}{\nu} \hat{M} \left[\Phi_+ + \Phi_- \right] = \hat{G} \left[\Phi_+ - \Phi_- \right] - \left(\hat{\Pi}_+ - \hat{\Pi}_- \right) \left[\Phi_+ - \Phi_- \right]
\]

Sum and subtractions of original eqs.

\[
\bar{X} = \hat{M} \left[\Phi_+ + \Phi_- \right]
\]

Eigenvalue problem

\[
\frac{1}{\nu^2} \bar{X} = \hat{F} \hat{E} \bar{X}
\]

\[
\hat{E} = \left(\hat{G} - \hat{\Pi}_+ - \hat{\Pi}_- \right) \hat{M}^{-1}
\]

\[
\hat{F} = \left(\hat{G} - \hat{\Pi}_+ + \hat{\Pi}_- \right) \hat{M}^{-1}
\]
Canopy analytical discrete ordinate

Complete solution (homogeneous+particular)

\[
\begin{align*}
\vec{I}_+ (\tau) &= \sum_{n=1}^{N} \left[A_n \Phi_{+,n} e^{-\tau/n} + B_n \Phi_{-,n} e^{-(\tau_0-\tau)/n} \right] + \vec{I}_+^p (\tau) \\
\vec{I}_- (\tau) &= \sum_{n=1}^{N} \left[A_n \Phi_{-,n} e^{-\tau/n} + B_n \Phi_{+,n} e^{-(\tau_0-\tau)/n} \right] + \vec{I}_-^p (\tau)
\end{align*}
\]

particular solution
(Barichello et al., 2000)

Imposing b.c. to determine coeffs \(A_n \) and \(B_n \)

\[
\begin{align*}
\sum_{n=1}^{N} \left[A_n \Phi_{+,n} + B_n \Phi_{-,n} e^{-\tau_0/n} \right] &= -\vec{I}_+^p (0) \\
\sum_{n=1}^{N} \left[A_n \Phi_{-,n} e^{-\tau_0/n} + B_n \Phi_{+,n} \right] &= -\vec{I}_-^p (\tau_0) + L \hat{I}_N
\end{align*}
\]

\[
L = 2r_s \hat{W} \hat{M} \vec{I}_+ (\tau_0) = 2r_s \hat{W} \hat{M} \left\{ \sum_{n=1}^{N} \left[A_n \Phi_{+,n} e^{-\tau_0/n} + B_n \Phi_{-,n} \right] + \vec{I}_+^p (\tau_0) \right\}
\]
Result summary

- Benchmark results
 - Comparison with SN and FN
- Hyperspectral results
 - LOPEX database
- Bi-directional reflectance and transmittance
Benchmark results (I)

Reflectance & transmittance intensities

<table>
<thead>
<tr>
<th>μ</th>
<th>ADO</th>
<th>FN</th>
<th>SN</th>
<th>ADO</th>
<th>FN</th>
<th>SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.79414E-02</td>
<td>8.75837E-02</td>
<td>8.7581E-02</td>
<td>8.7579E-02</td>
<td>4.57988E-02</td>
<td>4.5798E-02</td>
<td>4.5798E-02</td>
</tr>
<tr>
<td>1.15049E-01</td>
<td>8.42901E-02</td>
<td>8.4287E-02</td>
<td>8.4286E-02</td>
<td>4.38129E-02</td>
<td>4.3816E-02</td>
<td>4.3817E-02</td>
</tr>
<tr>
<td>2.06341E-01</td>
<td>8.57844E-02</td>
<td>8.5781E-02</td>
<td>8.5780E-02</td>
<td>3.46443E-02</td>
<td>3.4649E-02</td>
<td>3.4650E-02</td>
</tr>
<tr>
<td>3.16084E-01</td>
<td>8.79062E-02</td>
<td>8.7904E-02</td>
<td>8.7903E-02</td>
<td>2.68368E-02</td>
<td>2.6841E-02</td>
<td>2.6841E-02</td>
</tr>
<tr>
<td>4.37383E-01</td>
<td>8.89024E-02</td>
<td>8.8902E-02</td>
<td>8.8901E-02</td>
<td>2.35028E-02</td>
<td>2.3502E-02</td>
<td>2.3502E-02</td>
</tr>
<tr>
<td>5.62617E-01</td>
<td>8.89024E-02</td>
<td>8.8902E-02</td>
<td>8.8901E-02</td>
<td>2.35028E-02</td>
<td>2.3502E-02</td>
<td>2.3502E-02</td>
</tr>
<tr>
<td>6.83916E-01</td>
<td>8.89024E-02</td>
<td>8.8902E-02</td>
<td>8.8901E-02</td>
<td>2.35028E-02</td>
<td>2.3502E-02</td>
<td>2.3502E-02</td>
</tr>
<tr>
<td>7.93659E-01</td>
<td>8.89024E-02</td>
<td>8.8902E-02</td>
<td>8.8901E-02</td>
<td>2.35028E-02</td>
<td>2.3502E-02</td>
<td>2.3502E-02</td>
</tr>
<tr>
<td>8.84951E-01</td>
<td>8.89024E-02</td>
<td>8.8902E-02</td>
<td>8.8901E-02</td>
<td>2.35028E-02</td>
<td>2.3502E-02</td>
<td>2.3502E-02</td>
</tr>
<tr>
<td>9.52059E-01</td>
<td>8.89024E-02</td>
<td>8.8902E-02</td>
<td>8.8901E-02</td>
<td>2.35028E-02</td>
<td>2.3502E-02</td>
<td>2.3502E-02</td>
</tr>
<tr>
<td>9.90780E-01</td>
<td>8.89024E-02</td>
<td>8.8902E-02</td>
<td>8.8901E-02</td>
<td>2.35028E-02</td>
<td>2.3502E-02</td>
<td>2.3502E-02</td>
</tr>
</tbody>
</table>

Input:

- $\theta_0 = 0.0^\circ$
- $\theta^* = 25.31^\circ$
- $r_s = 0.2$
- $\Delta = 1.0$
- $\tau_L = 0.5$
- $\rho_L = 0.4$

FN and SN from Ganapol and Myneni (1992)

At least 3-digit agreement
Benchmark results (II)

Reflectance & transmittance

<table>
<thead>
<tr>
<th></th>
<th>ADO</th>
<th>FN</th>
</tr>
</thead>
<tbody>
<tr>
<td>erectophile</td>
<td>1.34007E-02</td>
<td>1.3400E-02</td>
</tr>
<tr>
<td></td>
<td>1.47760E-01</td>
<td>1.4774E-01</td>
</tr>
<tr>
<td>plagiophile</td>
<td>2.09476E-02</td>
<td>2.0947E-02</td>
</tr>
<tr>
<td></td>
<td>2.15370E-01</td>
<td>2.1536E-01</td>
</tr>
<tr>
<td>extremophile</td>
<td>5.40089E-02</td>
<td>5.4009E-02</td>
</tr>
<tr>
<td></td>
<td>5.43626E-03</td>
<td>5.4363E-03</td>
</tr>
<tr>
<td>uniform</td>
<td>1.60213E-02</td>
<td>1.6021E-02</td>
</tr>
<tr>
<td></td>
<td>1.69510E-01</td>
<td>1.6951E-01</td>
</tr>
</tbody>
</table>

Input:
- \(\Delta = 1.0 \)
- \(r_s = 0.2 \)
- A. \(\rho_L = 0.07 \) \(\tau_L = 0.03 \)
- B. \(\rho_L = 0.45 \) \(\tau_L = 0.45 \)

At least 4-digit agreement

FN from Ganapol and Myneni (1992)
Hyperspectral results

Input:
LAI = 10, \(r_s = 0.0 \)
oaks (planophile)
\(\rho_L, \tau_L \) from LOPEX database
(Hosgood et al., 1995)
Results for single-oriented leaves (I)

Angular distribution of reflectance

Input:
LAI = 1, \(r_s = 0.0 \)
1. \(\theta^* = 10^\circ \)
3. \(\theta^* = 60^\circ \)
4. \(\theta^* = 85^\circ \)

mean angle of the single-oriented leaves

TOC
BOC
Results for single-oriented leaves (II)

Transmittance angular distribution

Input:
LAI = 1, \(r_s = 0.0 \)
1. \(\theta^* = 10^\circ \)
3. \(\theta^* = 60^\circ \)
4. \(\theta^* = 85^\circ \)
Conclusions and perspectives

- We presented a review of peculiar features of RT in vegetation compared to classical transport in isotropic media.
- The ADO method can be extended to deal with anisotropic media only if certain symmetries hold.
- Results are compared with literature and are in excellent agreement.
- Future work is foreseen to extend the technique to the two-angle case.
Backup
Symmetry properties

- RT in canopies:

\[\Gamma(\Omega' \rightarrow \Omega) = \Gamma(\Omega \rightarrow \Omega') = \Gamma(-\Omega' \rightarrow -\Omega) \]
Canopy structure properties

- LAD can normally be expressed assuming polar and azimuthal angles are independent
 \[g_L(\Omega_L) = h_L(\phi_L)k(\mu_L) \]

- A random leaf distribution in azimuth is experimentally observed => \(h_L(\phi_L) = 1 \)

\[
G(\Omega) = \int_0^{+1} d\mu_L k_L(\mu_L)\psi(\mu, \mu_L)
\]

\[
\psi(\mu, \mu_L) = \frac{1}{2\pi} \int_0^{2\pi} d\phi_L |\Omega \cdot \Omega_L|
\]

analytical derivation of total cross section (Shultis and Myneni)
Phase function definition

Area transfer function definition

\[\Gamma(\Omega' \rightarrow \Omega) = r_L \Gamma^- (\Omega' \rightarrow \Omega) + t_L \Gamma^+ (\Omega' \rightarrow \Omega) \]

where:

\[\Gamma^\pm (\Omega' \rightarrow \Omega) = \pm \frac{1}{2\pi} \int_{0}^{+1} d\phi_L \int_{\pm 0}^{2\pi} d\mu_L g_L (\Omega_L) (\Omega_L \cdot \Omega')(\Omega_L \cdot \Omega) \]

being the sign “+” relative to the values for which integrand is positive and “-” for negative.
Leaf model

- Assumptions:
 - non-dimensional planar scattering center
 - spatially non correlated with one another (otherwise MC, ray-tracing, stochastic approaches)

- Scattering model choice is not trivial...
 - Isotropic scattering
 - Anisotropic rotationally-invariant phase function (such as Henyey-Greenstein)

=> *Experimental measurements show that using a rotationally-invariant phase function introduces non-negligible errors*