Welcome!

Welcome to Oregon State University (OSU) and the School of Nuclear Science and Engineering (NSE). This handbook is intended to help you get settled and answer some of the questions you might have as a new graduate student in the school. If, after reading the contents, you have unanswered questions, please feel free to ask for help. The staff, faculty, and fellow graduate students in the Radiation Center and in the school are available and willing to help solve any issues as they arise. Additional information on deadlines, procedures and requirements is provided by the current Oregon State University Catalog and Guide to Success which may be obtained from the Graduate School: http://oregonstate.edu/dept/grad_school/

Graduate students in NSE are responsible for complying with the rules of the University, the Graduate School, and NSE. In some instances, the requirements of NSE are more restrictive than those of the Graduate School. In such cases, the school requirements specified in this document will apply.

The program requirements that an NSE student must satisfy for a graduate degree are those contained in the version of the Handbook and/or Catalog that is current at the time of your matriculation into the program. You and your graduate advisor should consult the correct handbook version for appropriate guidelines.

The faculty hopes that your time at OSU will be rewarding, memorable, and the beginning of a fruitful career in the nuclear sciences and engineering fields.

Dr. Haori Yang, Associate Professor
Graduate Committee Chair
School of Nuclear Science and Engineering

Disclaimer: Official program requirements are available in the OSU Catalog. If there is a conflict between what is stated here and what is presented in the catalog, the OSU Catalog requirements take precedent.
Contents

1 Getting Settled 4

1.1 Radiation Center Orientation Program 4
1.2 Graduate Student Offices 4
1.3 Mailboxes 4
1.4 Advisor/Major Professor 5
1.5 Computer Use 5
1.6 Parking 6
1.7 Smoking 6
1.8 Radiation Center Library 6
1.9 General Safety Guidelines 6

2 Special Services at Oregon State University 7

2.1 Campus Resource Guide 7
2.2 Oregon State University Student Branch of the American Nuclear Society 7
2.3 Oregon State University Student Branch of the Health Physics Society 7
2.4 American Chemical Society (ACS) 8
2.5 Oregon State University Chapter of the Institute of Nuclear Materials Management 8

3 NSE Faculty 10

3.1 Samuel Briggs 10
3.2 Tianyi Chen 10
3.3 Abi T. Farsoni 10
3.4 Izabela Gutowska 11
3.5 Kathryn A. Higley 11
3.6 Wade R. Marcum 11
3.7 Guillaume Mignot 12
3.8 Camille J. Palmer 12
3.9 Todd S. Palmer 12
3.10 Alena Paulenova 13
3.11 Steven R. Reese 13
3.12 Brian Woods 13
3.13 Qiao Wu 13
3.14 Haori Yang 14
4 Facilities
4.1 TRIGA Reactor
4.2 ATHRL
4.3 ANSEL
4.4 TRUELAB
4.5 Other Labs and Facilities

5 Academic Information
5.1 General Information
5.2 Academic Performance
5.3 Graduate Assistantships
5.4 Registration
5.5 Tuition Bills
5.6 Leave of Absence
5.7 Health Insurance/Dental Insurance/Immunization Requirements
5.8 Summer Term
5.9 Dismissal from Graduate School
5.10 Basic Requirements for All Graduate Degrees
5.11 Annual Self-evaluation
5.12 Research Integrity

6 Master Degree Program
6.1 Master's Thesis
6.2 Thesis Defense Committees (MS Students)
6.3 Non-Thesis Comprehensive Oral Exam (MEng and MHP Students)
6.4 MS/MEng In Nuclear Engineering
6.5 MS/MHP in Radiation Health Physics
6.6 Procedures Leading to a Master's Degree

7 Doctoral Degree Program
7.1 Course of Study
7.2 Doctoral Committees
7.3 Matriculation/Candidacy
7.4 Qualifying Examination for Doctoral Students
7.4.1 Schedule the Qualifying Exam
7.4.2 Structure of the Qualifying Exam
7.5 Preliminary Oral Examination
7.6 Doctoral Dissertation
7.7 Final Oral Examinations
7.8 Procedures Leading to the Doctoral Degree
7.9 Notes About the Checksheet
1 Getting Settled

The School of Nuclear Science and Engineering (NSE) resides in the Radiation Center (RC) – the facility that houses OSU’s TRIGA nuclear research reactor. The RC is an instructional and research facility specially designed to accommodate programs involving the use of radiation and radioactive materials. This unique facility was designed and established to accommodate internal and off-campus instructional and research programs involving nuclear engineering, nuclear science, radiation protection, nuclear chemistry, and other related areas.

1.1 Radiation Center Orientation Program

The RC conducts a general occupational and radiation safety orientation and training program for all individuals housed in the RC. You must complete the orientation process in order to obtain keys or an After-Hours Work Permit, which authorizes you to be in the RC outside of normal business hours (8 am – 5 pm, Monday through Friday). Please see the RC Administrative Assistant in C100 for more complete instructions on obtaining keys and an After-Hours Work Permit if you miss the orientation session.

The security of your keys is quite important for everyone’s safety in the RC. It is imperative that any loss of keys be reported immediately to C100. You are requested to exercise the utmost care in the use of your keys. Under absolutely no circumstances are keys to be loaned to other individuals. Graduate students who will be absent from the RC during the summer should leave their keys with the RC Administrative Assistant in C100. This will minimize loss and facilitate the summer key inventory. In addition, keys must be returned when you finish your residency at the RC. Let the RC Administrative Assistant in C100 know of your pending departure at least a week in advance so the proper exit procedures can be followed.

Campus Security patrols the RC periodically outside of business hours (5 pm – 8 am). Anyone without an After-Hours Work Permit and valid photo ID will be required to leave the building. Office and laboratory doors and windows are to be kept closed and locked when not occupied. Security patrols will lock any open, vacant rooms. Do not let anyone into the building after hours. Individuals who are authorized to be in the building after hours are issued appropriate access codes and keys. Guests or family members are not allowed in the RC after hours. Anyone abusing this system will have his/her After-Hours Work Permit revoked.

1.2 Graduate Student Offices

NSE graduate student offices are located throughout the RC and Batcheller Hall. Offices are assigned to returning students, and then to new students as they arrive on campus. There are limitations to space, therefore not all students will be granted office space. Students on graduate research or graduate teaching assistant appointments will be given preference, with remaining students placed as space permits. Office space for PhD students is also prioritized over office space for Masters students. For office assignments, see the Graduate Program Chair or the Graduate Student Liaison. Once placed, please do not change your office space without the Graduate Program Chair’s approval.

1.3 Mailboxes

Each graduate student is assigned a mailbox in C corridor at the front of the building. U.S. mail is delivered once a day. Campus mail arrives twice daily at about 10:30 am and 2:30 pm. U.S. and campus mail drops are located in front of A100. Please check your mailbox regularly for notices, telephone messages, departmental circulars, and other information.
1.4 Advisor/Major Professor

The Graduate Program Director will act as or appoint an advisor for all incoming graduate students until a major professor is selected.

Make an initial appointment to see your advisor prior to registering. Your advisor will help you plan your schedule and make sure requirements are fulfilled. You are, however, ultimately responsible for seeing that you have fulfilled all the requirements necessary for graduation. It is the responsibility of each student to propose a viable program and to ask a faculty member to become his/her major professor. **A major professor must be chosen before the completion of 18 credits, typically by the end of your second term at OSU.** The choice of a major professor should be given considerable thought, since you will have a close working relationship with this individual for the duration of your degree program, and close professional and personal contacts thereafter.

Your major professor will guide your research efforts to completion and overseer all aspects of your graduate studies. The student is also responsible for actively seeking information about individual research projects. Good sources of information are the professors themselves or their graduate students.

1.5 Computer Use

In general, most of the large computer codes used in the school have been moved to the UNIX system where their performance is maximized. The UNIX system should be used primarily for solving large-scale problems, software development, and symbolic mathematics. The PC-based computers should be used primarily for word processing, spreadsheet, and internet connectivity applications.

School computers are supplied to allow you to perform your research activities and course work, and should not be used for games or other personal uses during normal business hours (8:00 am - 5:00 pm, Monday – Friday). After hours personal use, within reason (as described by University policy), is allowed as long as others do not need the computers for their research or class activities. Computer use supporting funded research takes priority over use for non-funded research.

Room A124 is divided into two sections: a computer laboratory space that lines the walls of the room and a set of tables that run the length of the room in the center. This space is to be used as a common work space for both undergraduate and graduate students. However, no computers, chairs, or desk locations should ever be used by a student as a permanent workstation. The intent of this common collaborative space is to provide students with resources that they need to succeed. Please be respectful of those who need them by working at a station actively, and picking up your belongings and cleaning up the space when you leave.

If someone is using a computer for an application which is inappropriate, or falls under a low priority, kindly request that they terminate their work in a reasonable period of time. In any case no more than 15 minutes should be needed to terminate the work on a lower priority application. If you are asked to terminate your work on a lower priority application, please stop work as soon as you can (again, in no more than 15 minutes).

Do not copy ANY software onto the School’s computer hard disks without approval from the School Head and the Network Administrator. Software licensing and disk space availability are two issues that must be considered. The installation of your own personal copies of software on the school’s machines without permission exposes the school to an unacceptable potential liability and therefore cannot be allowed. Please ask permission for the installation and use of your personal software if it is important to your research or course work. Also, please do not copy any software from the school’s computers without permission. This, again, violates software licensing agreements.

If you have any general questions about using University computers, please contact Chris Thompson in A114 or at support@engr.orst.edu for assistance, or refer to the University’s Policy on Acceptable Use of University Computing Facilities at these web sites: http://engineering.oregonstate.edu/computing/
1.6 Parking

A valid OSU Zonal Parking permit is required to park in any space on campus. The OSU Zonal Parking system includes seven general use zones (A1, A2, A3, B1, B2, B3, C), and two residence hall parking zones (BR, CR). The Radiation Center parking lot is designated zone B3, while parking on Jefferson Way west of SW 35th Street is designated zone C. Permits can be purchased online at the Parking Services website: http://parking.oregonstate.edu or in person at the Parking Services office in 100 Adams Hall. Please refer to the Parking Services website for the Parking and Shuttle Map as well as permit pricing. Parking Services can also be reached by phone at (541) 737-2583.

1.7 Smoking

Smoking is not allowed on the Corvallis campus. This includes the Radiation Center. Please consult the map on the following webpage for the campus boundary: https://health.oregonstate.edu/tobacco-free/policy

1.8 Radiation Center Library

The RC Reference Library is located in A124. Materials are not to be checked out and cannot be removed from the library. Please DO NOT re-shelve any materials you use but rather put your books in the designated area with the sign that reads “Please return materials here.” The RC receptionist will re-shelve materials to their proper place. If you wish to add books or documents to the library, please give the material to the RC receptionist who will be maintaining the library. The receptionist can catalog the new material and place it in the correct location. Keep the library clean and tidy up after yourself.

1.9 General Safety Guidelines

In order to comply with state and university fire prevention codes, the RC has adopted a policy which prohibits the use of personal coffee pots, hot plates, or other heating devices designed to heat water for coffee, tea, hot chocolate, etc. A refrigerator, coffeepots, hot water dispenser, and a microwave, can be found in the break-room, B134. No one should stay “overnight” in the building.

The last person to leave a room after 5:00 pm is required to check to see that all windows are closed and that door(s) are locked.

First aid kits and emergency eye wash stations and fire extinguishers are located at various places throughout the Radiation Center on the walls. Names of Radiation Center personnel qualified to administer first aid are also listed as part of the first aid kits. All injury accidents are to be reported to OSU’s Office of Environmental Health and Safety on forms available from the Business Manager in A102.

Building evacuation drills will be conducted during the year. Please familiarize yourself with the evacuation signals and procedures. These are posted at numerous locations throughout the Radiation Center.

If you have questions regarding any of the above or any other safety matters, contact the RC Director.
2 Special Services at Oregon State University

2.1 Campus Resource Guide

Graduate Success Center is a service available to Graduate Students and faculty. For details, please visit http://gradschool.oregonstate.edu/graduate-student-success

2.2 Oregon State University Student Branch of the American Nuclear Society

OSU has a very active student branch of the American Nuclear Society (ANS). Officers are elected once each year. Contact the Faculty Advisor (Dr. Samuel Briggs) for information on the student chapter of the ANS.

National ANS student member dues are currently $30.00 (your first year is paid by the School) and benefits include:

- Twelve issues of Nuclear News
- ANS News, the newsletter on Society and member activities
- ANS Placement Services
- Special registration rates for ANS meetings
- Opportunity to present papers
- Opportunity to meet with others pursuing similar interests
- Membership in two ANS professional divisions or technical groups

The application form is available online at http://ans.org/

2.3 Oregon State University Student Branch of the Health Physics Society

In 1993, students in the radiation health physics program at OSU organized a student chapter of the National Health Physics Society. The Society's objective is to develop “scientific knowledge and practical means for protection of man and his environment from the harmful effects of radiation.” The organization provides technical information and information about the business of radiation protection in its monthly publication, Health Physics journal and the Health Physics News newsletter. OSU Chapter officers are elected once each year. Contact the Faculty Advisor (Dr. Samuel Briggs) for information on the student chapter of the HPS.

National student membership in the Health Physics Society qualifies students for membership in the student chapter as well. National Health Physics Society student membership dues are free for the first year then continue at $10 per year and benefits include:

- 12 issues of Health Physics
- The Health Physics Society’s newsletter
- Health Physics Society job placement services
- Opportunities for fellowships
- Opportunities for registration and travel assistance for HPS meetings
- Chapter social activities

Membership in the student chapter is open to individuals in the NSE and NE programs, as well as students with an interest in health physics. For a membership application contact the website at http://hps.org/.

2.4 American Chemical Society (ACS)

Students in the Radiochemistry research program are advised to join the Division of the Nuclear Chemistry and Technology of the American Chemical Society (www.acs.org). Contact the Faculty Advisor (Dr. Alena Paulenova) for more information. ACS is a nonprofit organization, chartered by Congress, and with more than 161,000 members, ACS is the world's largest scientific society and one of the world's leading sources of authoritative scientific information.

The first year graduate student membership is $38.50 USD and covers 12 issues of the Chemical Engineering News (CEN) magazine and the Nuclear Chemistry and Nuclear Technology Division Newsletter. As a member of the ACS, you will have a free access to:

- Networking: Special registration fees for national ACS meetings and regional conference; opportunities for travel assistance for ACS meetings; communicate with other members and finding scientific collaborations, get information about the latest research, participate in the ACS public forums, groups and personal blogs.
- Internships & Opportunities: ACS provides its members with the resources and opportunities needed to enrich their programs of study.
- Research & Publications: Stay up-to-date in world chemical news and breakthroughs in research with ACS publications.
- Jobs: ACS offers its members a variety of educational and professional development resources to help advance their careers.

2.5 Oregon State University Chapter of the Institute of Nuclear Materials Management

In 2015, NSE created a nationally recognized Student Chapter of the Institute of Nuclear Materials Management (INMM) is an international professional society dedicated to development and promulgation of practices for the safe, secure and effective stewardship of nuclear materials through the advancement of scientific knowledge, technical skills, policy dialogue, and enhancement of professional capabilities. Nuclear materials management involves the production, use, storage, transport, handling, protection, accounting and other essential aspects involved with the fundamental elements of the civilian nuclear fuel cycle, most notably, uranium and plutonium.

Student memberships are $30 annually, and student members receive an online subscription to the Journal of Nuclear Materials Management (a $100 value), the INMM Membership Directory, access to the Members’ Only section of the INMM Web site, opportunities to participate in student award competitions, and much more. OSU Chapter officers are elected once each year.

Contact the Faculty Advisor (Dr. Camille Palmer) for information on the student chapter of the INMM. Membership in the student chapter is open to all individuals in the School of NSE, and any other student with an interest in this sub-discipline. For a membership application visit the website: http://www.inmm.org.
Figure 1: Radiation Center Map
3 NSE Faculty

3.1 Samuel Briggs

Assistant Professor. B.S. Nuclear Engineering (2011), Oregon State University; M.S. Nuclear Engineering and Engineering Physics (2013); Ph.D. Nuclear Engineering and Engineering Physics (2016), University of Wisconsin-Madison.

Previously Postdoctoral Appointee in the Department of Radiation-Solid Interactions at Sandia National Laboratories (2017-2018).

At Oregon State University since 2018.

Dr. Briggs’ research focuses on the study of materials degradation in next-generation nuclear reactor environments. His group is developing facilities and methods to perform materials testing in liquid sodium, molten salt, and high-temperature gaseous environments. Fields of Interest: Nuclear materials, radiation damage in materials, structure/property relationships, development of advanced ferritic alloys, micromechanical testing, electron microscopy, materials for molten salt and liquid sodium environments, additive manufacturing, synergistic effects of superimposed extreme environments on materials degradation.

3.2 Tianyi Chen

Assistant Professor. B.S. Physics (2010), Peking University; M.S. Nuclear Engineering (2013), Ph.D. Nuclear Engineering (2015), Texas A&M University.

Fields of interest: nuclear materials, radiation effects, microstructure analysis, electron microscopy, materials processing-structure-property relationships, mechanics of materials, and atomic scale modeling.

3.3 Abi T. Farsoni

Associate Professor. B.S. Applied Physics (1992), University of Tehran; M.S. Nuclear Engineering (1999), Sharif University of Technology; Ph.D. Radiation Health Physics (2006), Oregon State University.

Esfahan Nuclear Technology Center (1992–2000). Radionuclide expert, National Nuclear Security Administration (2005–present). At Oregon State University since 2006. Dr. Farsoni’s research is interdisciplinary, crossing the boundaries between nuclear technology, advanced detection systems, and radiological environmental monitoring. Dr. Farsoni’s primary research interests are in the areas of nuclear detection infrastructure for homeland security, remote atmospheric sensing, nuclear nonproliferation, radiological environmental measurements, environmental health physics, radiation dosimetry, and real-time digital data acquisition and processing systems. He has been in this field since 1992, conducting research in various areas from designing explosive-detection systems through neutron activation analysis to developing intelligent sensors for monitoring nuclear weapons tests around the globe.
3.4 Izabela Gutowska

Assistant Professor. Ph.D. Nuclear Engineering, Oregon State University (2015); M.S. Nuclear Engineering, Oregon State University (2012); B.S. Power Engineering, Warsaw University of Technology (2011)

At Oregon State since 2016.

Izabela Gutowska's expertise is in nuclear reactor thermal hydraulics, with an emphasis on the application of computational fluid dynamics to optimize fluid flow and heat transfer in nuclear reactor systems and to perform safety analysis. Her research interests scope experimental and computational thermal-hydraulics aspects involving Generation IV (e.g., very high temperature, molten salt) and small modular reactors. Using experimental and simulation results, Gutowska detects critical areas and causes of thermal-hydraulic performance loss and develops applicable proposals for design improvements. She also performs computational fluid dynamics verification, validation, and uncertainty analyses.

Prior to Oregon State, Gutowska was an advanced computational fluid dynamics engineer at General Electric's Engineering Design Center (2014-2016) and a research assistant at Warsaw University of Technology (2010-2013).

3.5 Kathryn A. Higley

Professor. B.A. Chemistry (1978), Reed College; M.S. Radiological Health Sciences (1992), Ph.D. Radiological Health Sciences (1994), Colorado State University.

3.6 Wade R. Marcum

3.7 Guillaume Mignot

Assistant Professor/Senior Research. Ph.D. Nuclear Engineering, University of Wisconsin-Madison (2008)

As a Scientist at the Paul Scherrer Institute (Switzerland), his research focused on thermal hydraulic related to severe accident and containment. A special emphasis was put on code verification and validation under OCED/NEA joint project. Another aspect of his research was oriented toward instrumentation development such as film thickness, film temperature measurement in condensing/evaporating environment. At OSU since 2017, he will initially manage the commissioning and the operation of the new Naval Reactor Test Loop (NRTL) to assess the reliability of centrifugal pumps that will be installed in the Advanced Test Reactor at the Idaho National Laboratory. Fields of interest: experimental and computational thermal-hydraulics, instrumentation, reactor safety, severe accident.

At OSU since 2017.

3.8 Camille J. Palmer

Dr. Palmer's professional interests emphasize international nuclear security and nonproliferation where she pursues collaborative and interdisciplinary research with the School of Public Policy, Electrical Engineering and Computer Science, and Robotics. Since 2015, she has served as the faculty advisor for the student chapter of the Institute for Nuclear Material Management (INMM). Previous positions held include nuclear hardness and survivability Systems Engineer for Northrop Grumman Mission Systems (2003-2006), and as a Staff Scientist at Los Alamos National Laboratory (2006-2007; 2011-2012) in X-Theoretical Division. Her experience in nuclear weapons and weapon effects informs and guides her research on interdisciplinary projects to support nuclear nonproliferation. Other interests include space radiation effects and emerging technological threats to nuclear. She is a current member of the Institute of Nuclear Materials Management, American Nuclear Society, and the Center for Strategic & International Studies’ Project on Nuclear Issues (PONI).

3.9 Todd S. Palmer

My research interests include numerical techniques for particle transport and diffusion, nuclear reactor physics, high performance computing, general numerical methods, radiation hydrodynamics, Monte Carlo methods, Boltzmann problems in material science, and stochastic mixture transport. My research collaborations involve numerous U.S. national laboratories (LANL, LLNL, ORNL, PNNL, INL) and my sponsors also include the Defense Threat Reduction Agency, the Department of Energy and the Nuclear Regulatory Commission.
3.10 Alena Paulenova

Professor; Director of TRUELAB Laboratory of Transuranic Elements; Adjunct Professor at Department of Chemistry; Ph.D. Physical Chemistry (1985) Moscow/Kharkov State University; M.S. Radiochemistry (1991), Comenius University.

Affiliated research faculty with the Radiochemistry and Aqueous Separation Division in Idaho National Laboratory (2008-present). Member of American Chemical Society (Division of Nuclear Chemistry and Technology); Distinguished Member of Editorial Board of the Journal of Radioanalytical Nuclear Chemistry.

At Oregon State University since 2003.

Fields of interest: recovery of materials, chemistry of actinides and fission products in fuel cycle and waste management, nano-radiochemistry and material science, post-irradiation evaluation, behavior and mobility of radionuclides in natural bio-geochemical systems, production and application of radiotracers. Research funding from Department of Energy, collaboration with Argonne NL, Idaho NL, and Pacific Northwest NL.

3.11 Steven R. Reese

Associate Professor; Director, Radiation Center. B.S. General Science (1991), Oregon State University; Ph.D. Radiological Health Sciences (1997), Colorado State University.

3.12 Brian Woods

3.13 Qiao Wu

Professor. B.S. Engineering Physics (1983), M.S. Engineering Physics (1985), Tsinghua University; Ph.D. Nuclear Engineering (1995), Purdue University.

3.14 Haori Yang

![Haori Yang](image)

Associate Professor. B.S. Engineering Physics (2001), M.S. Engineering Physics (2003), Tsinghua University; Ph.D. Nuclear Engineering and Radiological Sciences (2009), University of Michigan.

At Oregon State University since 2013. Haori Yang’s research interests include non-destructive interrogation techniques, development of innovative radiation sensors, and general applications of nuclear instrumentation.
4 Facilities

The School of Nuclear Science and Engineering is housed in the Radiation Center, an instructional and research facility established specifically to accommodate nuclear related research programs, to provide a location for the use of radionuclides and ionizing radiation sources, and to provide sources of fast and thermal neutrons and gamma rays. Major facilities at the OSU Radiation Center include: a 1.1 MW TRIGA research reactor and associated facilities, including a rotating sample rack, a pneumatic transfer irradiation system, a thermal column, in-core irradiation tubes (with and without cadmium), and four beam port facilities; a cobalt-60 gamma-ray irradiator; state-of-the-art digital gamma-ray spectrometers and associated germanium detectors; and various radiochemistry laboratories.

The School of Nuclear Science and Engineering is equipped with state-of-the-art nuclear and radiation protection instrumentation and computing facilities. Computers include a number of PC and UNIX based workstations. The school’s computers also provide access through networking to larger computers, such as supercomputing facilities, on and off campus. In addition to radiation facilities, there are laboratories dedicated to the investigation of other phenomena important to the study of nuclear sciences and engineering, including a number of large-scale experimental test facilities.

4.1 TRIGA Reactor

1.1 MW TRIGA Mark II Pulsing Research Reactor is a water-cooled, swimming pool type of research reactor which uses uranium/zirconium hydride fuel elements in a circular grid array. The reactor is licensed by the U.S. Nuclear Regulatory Commission to operate at maximum steady state power of 1.1 MW, and can also be pulsed up to a peak power of about 3000 MW. The reactor has a variety of irradiation facilities available.

4.2 ATHRL

ATHRL – the Advanced Thermal Hydraulic Research Laboratory – hosts the Multi-Application Small Light Water Reactor (MASLWR) test facility, a Generation IV design concept. ATHRL offers excellent opportunities for student research and training in instrumentation, quality assurance, safety, operations, and nuclear and mechanical design.

4.3 ANSEL

ANSEL – The Advanced Nuclear Systems Engineering Laboratory is the home to two major thermal-hydraulic test facilities – the High Temperature Test Facility (HTTF) and the Hydro-mechanical Fuel Test Facility (HMFTF). The HTTF is a 1/4 scale model of the Modular High Temperature Gas Reactor. The vessel has a ceramic lined upper head and shroud capable of operation at 850 C (well mixed helium). The design will allow for a maximum operating pressure of 1.0MPa and a maximum core ceramic temperature of 1600 C. The nominal working fluid will be helium with a core power of approximately 600 kW (note that electrical heaters are used to simulate the core power). The test facility also includes a scaled reactor cavity cooling system, a circulator and a heat sink in order to complete the cycle. The HTTF can be used to simulate a wide range of accident scenarios in gas reactors to include the depressurized conduction cooldown and pressurized conduction cooldown events. The HMFTF is a testing facility which will be used to produce a database of hydro-mechanical information to supplement the qualification of the prototypic ultrahigh density U-Mo Low Enriched Uranium fuel which will be implemented into the U.S. High Performance Research Reactors upon their conversion to low enriched fuel. This data in turn will be used to verify current theoretical hydro- and thermomechanical codes being used during safety analyses. The maximum operational pressure of the HMFTF is 600 psig with a maximum operational temperature of 450 F.
4.4 TRUELAB

TRUELAB – the Laboratory of Transuranic Elements – is a state-of-art radiochemical research laboratory, equipped with a variety of instrumentation for characterization of actinides and fission products and their chemical reactivity with organic and inorganic ligands and evaluation of postirradiation changes in solutions: Vibrational spectroscopy (Nicolet Fourier Transformation Infrared and Raman and FTIR and Raman spectroscopy) which allow to characterization of solid and liquid samples, Microcalorimetry (quantification of chemical thermodynamics of studied processes); UV-Vis and NIR spectroscopy (speciation of irradiated solutions, complexation of actinides in aqueous and organic matrices) with the stop-flow cell and syringe titrator; Dionex Ion-exchange and Finnigan liquid chromatography, potentiometric titration, glove box, electrochemistry (cyclic voltammetry). Preparation of samples for LSC and alpha-and gamma spectrometry.

4.5 Other Labs and Facilities

Cobalt-60 Gamma Irradiator; Neutron Radiography facility; Neutron Activation facility, Gamma and Alpha Spectrometry laboratory; Liquid Scintillation Counter (LSC Perkin Elmer); Radiological Instrument Calibration facilities; Thermoluminescent Dosimetry systems; large inventory of radiation detection instrumentation; student computer laboratory; student nuclear instrumentation laboratory; green house and wet chemistry laboratories.
5 Academic Information

5.1 General Information

Graduate students are expected to read the academic policies governing graduate study at OSU including, but not limited to, the OSU Catalog, the Graduate School policies, and the Student Conduct Regulations. The information herein addresses only a few topics regarding those policies.

5.2 Academic Performance

A graduate student is expected to maintain a grade point average of 3.00 or better in (1) each registered quarter, (2) each major or minor field in his/her program, and (3) in his/her overall cumulative graduate program at Oregon State University. Grades below "C" (2.00) cannot be used on a graduate program of study. Failure to maintain these standards is considered grounds for terminating a student's program and/or financial support. See the Dismissal from Graduate School section below for more details. Note that a cumulative GPA of 3.00 or better is required before the final oral or written exam may be undertaken.

5.3 Graduate Assistantships

Graduate research or teaching assistants are typically appointed for an academic year (9 months), provided the recipient is a graduate student in good standing. Annual performance evaluations will be completed by the graduate student's supervisor, and these evaluations will factor into a student's employability. No appointment can be for less than 0.30 FTE ("full-time equivalence") or more than 0.49 FTE. All graduate assistants are required to carry out the duties assigned by their faculty supervisor to justify their stipend. For example, graduate assistants on a 0.40 FTE appointment are expected to provide an average of 16 hours of service per week. This service is in addition to the time required to complete the thesis research. Graduate assistants at other FTE levels would provide proportional levels of service.

University policy dictates that a graduate assistant must be enrolled for no less than 12 credit hours in any term in which he or she is supported, except for summer term which requires a minimum of 3 credit hours. Students who hold more than one job on campus may not work more than a total of 20 hours per week or 255 hours per term for all positions held. Maintaining a GPA of 3.00 or better is required for continuing financial support.

5.4 Registration

Students shall register for courses online at the Student Online Services site. For convenience, students should have their proposed schedule (including CRNs) in front of them at the time of registration. The OSU ID number and a General Access PIN (GAP) are required for registration.

Minimum Registration Requirements

- EVERY student must register for a minimum of 3 credits, including
 - Any Summer term in which a student enrolls.
 - The term in which the thesis or dissertation (MS or PhD) is defended or the comprehensive oral exam (MHP or MEng) is taken.
 - Any term a student uses university space and facilities or requires supervision of the major professor, regardless of the student's location (on-campus or Ecampus).
- TAs / RAs must register for at least 12 credits (Fall – Spring terms).
– Auditing a class or enrolling in Continuing Higher Education and other self-support programs may not be used to satisfy enrollment requirements for graduate assistant tuition remission.

- Students receiving financial aid must contact the Financial Aid Office for specific registration requirements per term. Students must notify Financial Aid if they plan on enrolling less than full time.

Maximum Registration Requirements

- Grad students can register for a maximum of 16 credits each term without needing permission. Students should always consult with the major professor about class schedules to ensure proper progression toward the degree.
- Students must receive permission from their major professor and the Grad School to register beyond 16 credits.

Full-Time and Part-Time Enrollment

- Full-time graduate status is an enrollment of 9 credits per term (including summer).
- Financial Aid for part-time graduate students is evaluated on the basis of their part-time enrollment; students must contact Financial Aid for specific requirements.

Registering for Research Credits

- Registration for research credits requires the approval of your major professor/advisor and a registration override. This process is best completed through email.
- Registration override request can be sent to the Graduate Liaison (heidi.braly@oregonstate.edu).
- When requesting a registration override, please include your OSU ID number and the course registration number (CRN).

5.5 Tuition Bills

Students are sent an email to their ONID email account when their statement is ready to view and can then view their eBill statement online at http://mybill.oregonstate.edu/. All billing for currently enrolled students is processed electronically through eBill on the 5th of each month.

Unpaid balances as of the 1st of the month following the eBill statement are considered past due, and will be assessed interest at the rate of 1% per month (12% APR). Students are financially responsible for all courses for which they register. Students are responsible for paying fees by the deadline even if they do not receive a bill.

Please direct any questions about tuition, fees, and financial aid to the Business Affairs Office.

5.6 Leave of Absence

You must fill out a Leave of Absence form and have it approved by the Graduate School (at least 15 business days prior to the start of the term) if you need to take off a term (Fall, Winter, or Spring) for any reason.

- You are limited to three leaves of absence during your program. Some students (e.g. Military students called to duty) have more flexibility in the number of leaves allowed by the Graduate School.
- Notify the School’s Administrative Assistant if you need to take a leave.
- You never need to fill out a leave form for summer term.
• A graduate student who takes an unauthorized break in registration by failing to maintain continuous enrollment or by failing to obtain regular or planned leave of absence will relinquish his or her graduate standing in the university. Students who wish to have their graduate standing reinstated will be required to file an Application for Graduate Readmission and pay the readmission fee. The readmission application must be approved by the student’s major professor, department/school/program chair, and graduate dean. Acceptance back into a graduate program is not guaranteed even if the student departed in good standing. The petitioner for readmission will be required to meet university and departmental admission requirements and degree completion requirements that are in effect on the date of readmission. Review of the Application for Graduate Readmission may also result in a change of residency status from resident to nonresident.

For more information about the Graduate School’s policies,

• See the OSU Catalog under “Policies Governing All Graduate Programs” and “Registration Requirements” OR

• Contact the OSU Graduate School at 541-737-4881.

5.7 Health Insurance/Dental Insurance/Immunization Requirements

http://studenthealth.oregonstate.edu/new-students

5.8 Summer Term

The University requires that graduate students who occupy labs, office space, or utilize University facilities during the summer quarter register and pay fees. Graduate Assistants on appointment during the summer term normally must register for a minimum of 3 credits. However, summer graduate assistant employees must register at half-time status to avoid having FICA taxes (Social Security and Medicare) withheld from their paychecks. For graduate students, the minimum is 5 credits. It is recommended that you discuss with your major advisor before registering for the summer term.

5.9 Dismissal from Graduate School

It is imperative that all students read the Student Conduct Regulations to be aware of actions that may lead to the dismissal process: https://studentlife.oregonstate.edu/studentconduct

5.10 Basic Requirements for All Graduate Degrees

• School Seminar: All graduate students are expected to take a School seminar course (NSE 507/607) each enrolled term if one is offered; this is intended to develop your understanding of the profession and to develop presentation skills. Additional requirements may be set by the student’s major or minor professor, by the School, or by the student’s advisory committee as needed to strengthen his or her background. Only three seminar credits can be counted toward your Program of Study.

• Graduate Minor: Graduate students in the College of Engineering are not required to pursue a minor. However, if desired, a minor may be selected. Speak with your major professor for more details on Graduate Minors.

• Research Credits: Graduate students in the School of Nuclear Science and Engineering are NOT allowed to use NSE 501 or NSE 601 (Research) credits to fulfill requirements on a graduate program of study.
• **Thesis Credits**: Graduate students pursuing Master of Science degrees must include 6 credits of NSE 503 (Thesis) on their program of study. The program of study for a PhD student must include at least 36 credits of NSE 603.

• **Program of Study**: All students are required to complete a Program of Study outlining the courses they will take to meet their degree requirements. The Program of Study is a contract between the student, the School, and the University (the Graduate School). For degrees within the Master's Program, students must consult and receive approval (signature) from the individual major professor (and minor professor, if seeking a minor). In the case of Doctoral Program degree seeking students, all committee members must approve the Program of Study. Students must then receive the signature of the School Head prior to submitting the form to the Grad School (see Sections: Master’s Program and Doctoral Program). **The Program of Study form is to be filed before you complete 18 credit hours.** Visit the Grad School’s “Forms” website for a blank form and instructions on how to fill it out.

5.11 Annual Self-evaluation

Early in their programs, all NSE **MS and PhD** students should collaborate with their major professor and graduate committee to establish standards and expectations of a satisfactory progress. Student progress will be assessed annually. An assessment of academic progress is made by the student, the student’s major professor and, if requested, by other members of the student's graduate committee. Any member of the committee may provide an evaluation of student progress for inclusion in the assessment package, but this is optional. It is the responsibility of the student to conduct a self-assessment, arrange to meet with their major professor to review their academic progress, and to submit the signed and completed **Assessment of Graduate Student Academic Progress** form to the NSE Graduate Liaison no later than June 30th each year. Follow the steps described in **School of Nuclear Science and Engineering Graduate Degree Programs** **Graduate Student Academic Progress** available at: https://ne.oregonstate.edu/current-students.

5.12 Research Integrity

The conduct of research is a central educational component for the Masters and Doctoral degrees. The conduct of research bears with it certain ethical and legal responsibilities. It is the expectation of the School that you conduct your research activities with the highest standards of integrity, including compliance with all ethical, regulatory and University requirements.

Responsible Conduct of Research (RCR) Training is required for all NSE graduate students. To complete your RCR training:

1. Go to: https://www.citiprogram.org/index.cfm?pageID=154&icat=0&clear=1
2. Select your Organization Affiliation: type in “Oregon State University”.
3. While adding a course, for Questions 1-3, mark “Not at this time;” leave Question 4 unchecked; for Question 5, mark “RCR for Engineers;” for Question 6, mark “No;” for Question 7, mark “Not at this time."
4. Complete the training and email Heidi.Braly@oregonstate.edu a pdf of the certificate of completion with the title of “RCR Training Certificate - YOUR FULL NAME”.

School of Nuclear Science and Engineering
6 Master Degree Program

The School of Nuclear Science and Engineering (NSE) offers several degree programs in Nuclear Engineering, Health Physics, and Medical Physics. The School currently offers the following Masters’ degrees:

- Master of Science (MS);
- Master of Engineering (MEng); and
- Master of Health Physics (MHP).

The NE and HP degrees require a minimum of 45 credits to graduate; 24 credits must be graded graduate level NSE courses. Additional credits above 45 may be required depending on the educational background of the student. All students must complete a Program of Study form (see Graduate School website) before completing 18 credits. All work must be completed within seven years, including transfer credits, course work, and the thesis/oral exam.

It is the policy of the NSE Faculty that a minimum of 45 credits are required for the MS degree, of which no more than 9 blanket credits (excluding thesis credits) can be applied. Of these 9 blanket credits, 3 credits (no more, no less) must be Seminar (NSE 507). If additional blanket credits are to be included, those credits must be graded (not pass/fail). In addition, for MS students, 6 credits (no more, no less) of Thesis (NSE 503) must be included on the program of study.

Master of Science

A thesis in the major area is required for the MS degree, and the thesis format is bound by the rules of the Graduate School and the policies of the School of NSE. Visit the Graduate School’s website for details. Six, and only six, of the required 45 graded credit hours must be Thesis credits.

Master of Engineering (NE only) and Masters of Health Physics (HP only)

The MEng and MHP degree options provide students the opportunity to pursue advanced-level study without the requirement of completing thesis research. A comprehensive oral exam is taken in lieu of the thesis requirement and course requirements are the same as those for the MS degree. These degrees are intended as terminal degrees, not as preparation for a doctorate degree, and will emphasize job-related knowledge and skills. Although not required, students wishing to pursue a PhD in the future are advised to pursue an MS degree, not the MEng or MHP degree.

Minor (NE or RHP)

A minor field of study is optional. If a minor is declared, however, the minor credit hour requirement specified by the Graduate School is 15 hours minimum. Master's students are expected to take 18 hours or more of minor subject courses if the minor is “integrated”; i.e. it spans two or more academic units. The NSE Graduate Committee may apply suitable courses to such an integrated minor requirement as long as the courses are not in your major area of concentration and they comprise less than one-half of the credits in the minor.

It is the policy of the NSE faculty that it is acceptable for an NE student to obtain an HP minor, and vice-versa, with a minimum of 15 credits from the courses listed below, respectively.

- HP Minor: NSE 516 (4), NSE 582 (4), NSE 583 (3), NSE 588 (3), NSE 590 (3)
- NE Minor: NSE 551 (3), NSE 552 (3), NSE 553 (3), NSE 557 (2), NSE 567 (4), NSE 573 (3), NSE 568 (3)
6.1 Master’s Thesis

In this document, “thesis” refers to the manuscript written for an Master's degree, while “dissertation” refers to the manuscript written for a doctoral degree. The thesis demonstrates the mastery of professional knowledge in a particular subject area of the student’s chosen field. It must present innovative research or a novel application of a known methodology to appropriate problems. A conscientious survey of pertinent literature is a prerequisite to an acceptable thesis. The research topic must be approved by the major professor, and the research title must be registered with the Graduate School.

It is the policy of the NSE Faculty that MS students will follow the thesis formatting as stated under “Standard Document Format” in the OSU Graduate School Thesis Guide. The “Manuscript Document Format” will not be allowed for a Master’s thesis.

Since the thesis results from a significant body of work, the student is encouraged to publish the results of the thesis in the open literature. The student cannot schedule a defense exam with the Graduate School until the major professor approves the thesis for distribution to all committee members. Once approved, the student must submit a copy of the thesis to each committee member and complete the Event Scheduling Form with the Graduate School at least two weeks prior to the intended defense date. See your major professor for any other rules regarding thesis defense preparation requirements.

An MS candidate will be subjected to a two-hour final oral comprehensive examination, which includes a thesis research presentation, defense of the research, and exam questions on major, minor, and other pertinent academic subjects.

Thesis Guide

The Graduate School’s website has a complete guide to the thesis paper and the university requirements associated with the thesis. Students are encouraged to review the website listed below before starting to write the thesis to ensure understanding of the formatting, procedures, and deadlines:

http://oregonstate.edu/dept/grad_school/thesis.php

6.2 Thesis Defense Committees (MS Students)

1. The principal authority over a student’s program resides with the student’s Master’s Committee. This committee is responsible for:
 - assuring that University and School requirements are satisfied; and
 - administering the final oral examination.

2. The Committee consists of at least 4 members:
 - the student’s major professor;
 - one other NSE faculty member;
 - the student’s minor professor, or if no minor is selected, this committee member may be selected from graduate faculty at-large; and
 - the Graduate Council Representative.

 Note that the composition of a student’s Master’s Committee MUST be approved by the major professor.

3. The committee is originally formed, with approval from the major professor, at the student’s invitation. The Graduate Council Representative is selected from a list provided by the Graduate School. The Graduate Council Representative is required to attend the final examination (thesis defense). Information on the GCR can be found at:

http://oregonstate.edu/dept/grad_school/degreecommittee.php#council
6.3 Non-Thesis Comprehensive Oral Exam (MEng and MHP Students)

The following guidelines are written to help the student prepare for the oral exam. In addition to these guidelines, all rules of the Graduate School pertaining to final Master’s oral exams must be adhered to.

1. The exam committee shall consist of the following:
 - the student's major professor;
 - one other NSE faculty member; and
 - the student’s minor professor, or if no minor is selected, an additional NSE faculty member. Note: No Graduate Council Representative is required for an MHP or MEng oral exam.

2. The makeup of the exam committee must be approved by the student's major professor.

3. The exam shall be scheduled by the student, after consultation with all committee members, for a two-hour period. Scheduling shall be done in accordance with rules of the Grad School.

4. The student shall be given the option of selecting an area of concentration for the exam. The majority of exam questions will then be derived from material in that area. Exam concentration areas must be discussed with the student's major professor. The student must declare, to all committee members, the concentration choice at least one week prior to the exam.

5. Masters candidates who fail the oral examination on the first attempt may be given the opportunity, by the exam committee, to retake the exam or may be asked to leave the program without receiving the degree. Students are allowed to retake the exam one time only. Any student failing the second attempt will be dismissed from the program without receiving the degree.
6.4 MS/MEng In Nuclear Engineering

- At a minimum, students without an NE background shall include all courses listed below in Table 1 (or equivalent) in their Program of Study;
- The remainder of the student’s major program can be a compilation from any other 500 or 600 level courses as APPROVED by the major professor. Note that at least 24 credits must be graded graduate level NSE courses.

<table>
<thead>
<tr>
<th>Major Core Courses For All NE Students</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSE 531 – Radiophysics</td>
<td>3</td>
</tr>
<tr>
<td>NSE 536 – Advanced Instrumentation</td>
<td>4</td>
</tr>
<tr>
<td>NSE 568 – Nuclear Reactor Safety</td>
<td>3</td>
</tr>
<tr>
<td>NSE 535 – Radiation Shielding and External Dosimetry</td>
<td>4</td>
</tr>
<tr>
<td>Major Core Total</td>
<td>14</td>
</tr>
</tbody>
</table>

NOTE: Those students who completed NSE 435 (or equivalent) shall substitute NSE 535 with an NSE course

<table>
<thead>
<tr>
<th>Restrictive electives</th>
<th>10 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSE courses to be selected by the student and major advisor(s)</td>
<td>10 or more</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives</th>
<th>15 or fewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>To be determined by the student with major advisor(s)</td>
<td>15 or fewer</td>
</tr>
<tr>
<td>Can be NSE or other courses</td>
<td>15 or fewer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Requirements</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSE 503 – Thesis (MS students only)</td>
<td>6</td>
</tr>
<tr>
<td>NSE 507 – Seminar</td>
<td>3 (1 each)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsible Conduct of Research Training</th>
<th>Section 5.12</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Minimum Required Credits for the Degree</th>
<th>45</th>
</tr>
</thead>
</table>

Table 1: Courses for MS/MEng in NE

NOTE: Term offerings may be subject to change. Consult the OSU Catalog each term.
6.5 MS/MHP in Radiation Health Physics

- At a minimum, the student's Program of Study shall contain the courses in Table 2 below (or equivalent);
- For MS students, these courses should be taken as soon as possible in preparation for the thesis.
- The remainder of the student's major program can be a compilation of any other 500 or 600 level courses as APPROVED by the major professor. Note that at least 24 credits must be graded graduate level NSE courses.
- Completion of the Program of Study is mandatory by the end of the first academic term. A sample degree progression plan for MHP students can be found at https://ne.oregonstate.edu/sites/ne.oregonstate.edu/files/sample_e-degree_progression_plan_0.pdf.

Table 2: Courses for MS/MHP in RHP

<table>
<thead>
<tr>
<th>Major Core Courses For All RHP Students</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSE 515 – Nuclear Rules and Regulations</td>
<td>2</td>
</tr>
<tr>
<td>NSE 516 – Radiochemistry</td>
<td>4</td>
</tr>
<tr>
<td>NSE 531 – Radiophysics</td>
<td>3</td>
</tr>
<tr>
<td>NSE 535 – Radiation Shielding and External Dosimetry</td>
<td>4</td>
</tr>
<tr>
<td>NSE 536 – Advanced Instrumentation</td>
<td>4</td>
</tr>
<tr>
<td>NSE 582 – Applied Radiation Safety</td>
<td>4</td>
</tr>
<tr>
<td>NSE 583 – Radiation Biology</td>
<td>3</td>
</tr>
<tr>
<td>NSE 588 – Radioecology</td>
<td>3</td>
</tr>
<tr>
<td>NSE 590 – Internal Dosimetry</td>
<td>3</td>
</tr>
<tr>
<td>NSE 507 – Seminar</td>
<td>3 (1 each)</td>
</tr>
</tbody>
</table>

Major Core Total (for all) | **34**

<table>
<thead>
<tr>
<th>Other Requirements / Electives</th>
<th>Number of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSE 503 – Thesis (MS students only)</td>
<td>6</td>
</tr>
<tr>
<td>500 or 600 level courses (electives) as approved by major professor</td>
<td>varies</td>
</tr>
</tbody>
</table>

Other Requirements / Electives Total | **varies**

Responsible Conduct of Research Training | Section 5.12

Minimum Required Credits for the Degree | **45**

NOTE: Term offerings may be subject to change. Consult the OSU Catalog each term.
6.6 Procedures Leading to a Master’s Degree

An outline of the steps required to obtain the Master’s degree is provided in Table 3 and Table 4. You should become familiar with the specifics and detailed information contained on the Graduate School website as well as the School of NSE requirements. Final oral exams may be scheduled only during periods when classes are in session (including finals week).
<table>
<thead>
<tr>
<th>Check Box</th>
<th>Item #</th>
<th>Step</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Choose a major professor and a general thesis topic</td>
<td>By the end of your second term</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>File a Master’s Program of Study form (Grad School website)</td>
<td>Before completing 18 credit hours</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Read the Thesis Guide on the Grad School’s website</td>
<td>Prior to starting your thesis</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Notify your major professor of your intended graduation term</td>
<td>AT LEAST 1 term before your intended graduation term</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Compare Program of Study and transcripts for consistency</td>
<td>1 term before your intended graduation term</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>File Petition to Change Program of Study, if needed.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>File final Program of Study with Graduate School</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>File a Diploma Application (Grad School website)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Generate Grad Council Rep (GCR) list (Grad School website) and contact those people until you find someone willing to serve as your GCR</td>
<td>15 weeks prior to final oral examination</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Appoint Master’s Committee w/approval of your major professor</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Complete final draft of your thesis and submit it to your major professor for review and approval</td>
<td>By the start of your last term</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Decide on a day / time (2 hrs) with all Committee members (faculty & Grad Council Rep)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Reserve a room with the RC receptionist (Ecampus students need to contact the student liaison)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Fill out Exam Scheduling Form (Grad School website)</td>
<td>AT LEAST 2 weeks prior to final oral examination</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Submit thesis pretext pages to the Graduate School</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Submit a final draft of the thesis to all committee members (with advisor’s approval)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Confirm final oral examination appointment with the Grad School (make sure it’s on their calendar!)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Email defense poster and information to Jens Odegaard (day, time, room, topic, name etc.) jens.odegaard@oregonstate.edu</td>
<td>1 week after submitting exam scheduling form</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Remind the Committee of the final oral examination</td>
<td>AT LEAST 1 week prior to final oral examination</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Final oral examination</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Complete thesis revisions, have major professor approve & sign final version, and get 2 copies bound for the School http://gradschool.oregonstate.edu/progress/thesis-guide</td>
<td>Within 6 weeks of exam or by the first day of the next term, whichever is first; missing deadline will results in required registration min 3 credit no exceptions</td>
</tr>
</tbody>
</table>

Table 3: Procedures for MS Students
<table>
<thead>
<tr>
<th>Check Box</th>
<th>Item #</th>
<th>Step</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Choose a major professor and a general thesis topic</td>
<td>By the end of your second term</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>File a Master’s Program of Study form (Grad School website)</td>
<td>Before completing 18 credit hours</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Notify your major professor of your intended graduation term</td>
<td>AT LEAST 1 term before your intended graduation term</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Choose an area of specialization within your major and notify your major professor of the area</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Compare Program of Study and transcripts for consistency</td>
<td>1 term before your intended graduation term</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>File Petition to Change Program of Study, if needed.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>File final Program of Study with Graduate School</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>File a Diploma Application (Grad School website)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Appoint Master’s Committee w/approval of your major professor</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>Decide on a day / time (2 hrs) with all Committee members (faculty & Grad Council Rep)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Reserve a room with the RC receptionist (Ecampus students need to contact the student liaison)</td>
<td>AT LEAST 2 weeks prior to final oral examination</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>Fill out Exam Scheduling Form (Grad School website)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>Confirm final oral examination appointment with the Grad School (make sure it’s on their calendar!)</td>
<td>AT LEAST 1 week prior to final oral examination</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Remind the Committee of the final oral examination</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Final oral examination</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Procedures for MEng and MHP Students
7 Doctoral Degree Program

The School of NSE offers Doctoral Degrees in the following programs:

- Nuclear Engineering (NE);
- Radiation Health Physics (RHP);
- Medical Physics (MP).

7.1 Course of Study

1. Requirements for the doctorate include:
 (a) at least 108 graduate credits beyond the bachelor's degree;
 (b) at least 50% of the course work must be graduate stand-alone courses;
 (c) a minimum of one year of residence, continuously, at OSU (i.e., three consecutive terms as a full-time student);
 (d) passing a preliminary oral examination in the major subject; and
 (e) successfully defending the dissertation.

For other regulations, see the OSU Catalog, Graduate School website and School of NSE policies.

2. In addition, the School of NSE's requirements include:
 (a) total non-thesis coursework of 36 credits or more (excluding thesis);
 (b) completing Responsible Conduct of Research Training (see Section 5.12);
 (c) passing a qualifying examination for candidacy;
 (d) calling regular (every 6 months recommended, but at least annual) meetings of the Doctoral Committee so that the student's progress can be evaluated, and guidance offered; and
 (e) preparing, presenting and defending a written dissertation proposal, i.e., the Preliminary Exam. Confer with your major professor to prepare for this exam. The Prelim Exam should be taken as soon as possible after the qualifying exam;
 (f) a presentation of an original dissertation for which a minimum of 36 dissertation credit hours (NSE 603) has been accumulated;
 (g) additional courses or thesis (NSE 603) credits to be determined by the doctoral committee, in order to meet Graduate School's degree requirements.

7.2 Doctoral Committees

1. The principal authority over a student's program resides with the student's Doctoral Committee. This committee is responsible for:
 • assuring that University and School requirements are satisfied;
 • monitoring student progress;
 • assigning and approving courses of study;
 • approving dissertation topics and paths-forward; and
 • administering preliminary and final oral examinations.

2. The committee must include at least 5 members:
• the student's major professor;
• two other NSE faculty members;
• the student's minor professor, or if no minor is selected, a committee member may be selected from the graduate faculty at-large; and
• one Graduate Council Representative.

A student's Doctoral Committee may contain more than 5 members. Any additional members beyond the required 5 must be chosen from the Approved Graduate Faculty List for NSE maintained by the OSU Graduate School.

Note that the composition of a student's Doctoral Committee MUST be approved by the major professor.

3. The committee is originally formed, with approval from the major professor, at the student's invitation. The Graduate Council Representative is selected from a list provided by the Graduate School. The Graduate Council Representative is a permanent member of the committee and attends all committee meetings, including the preliminary program committee meeting, the oral preliminary exam, and the final examination (dissertation defense). Information on the GCR can be found at: http://oregonstate.edu/dept/grad_school/degreecommittee.php#council

4. The Committee must be appointed prior to the PhD Program Meeting.

7.3 Matriculation/Candidacy

1. Matriculation (first term of attendance) qualifies the student to:
 (a) select a general area of dissertation research;
 (b) form a doctoral committee with the major professor's guidance and approval; and
 (c) hold the initial doctoral Program Meeting.

2. After matriculation, the student must pass a qualifying examination to advance as a PhD candidate (described below).

7.4 Qualifying Examination for Doctoral Students

The purposes of the PhD Qualifying Exam are:

1. To evaluate a PhD student's mastery of core content in the specified subject area
2. To evaluate a PhD student's ability and preparation to conduct independent research

7.4.1 Schedule the Qualifying Exam

All students entering the doctoral programs are required to complete the qualifying examination within 18 months of matriculation as a PhD student.

7.4.2 Structure of the Qualifying Exam

The PhD qualifying exam has two parts:

1. Proficiency in coursework;
2. Competency in research.
Upon completing the doctoral program meeting and passing both parts of the qualifying exam, the student is categorized as a PhD candidate.

The PhD qualifying exam will be administrated by an exam committee. The members of the exam committee must include:

1. The student’s major advisor and
2. all other NSE faculty members on the student’s Doctoral Committee.

The NSE PhD Qualifying Examination Form must be completed and submitted to the NSE Graduate Committee for approval by the end of the first term. This form is available at: https://ne.oregonstate.edu/current-students.

Part 1: Proficiency in coursework

To complete Part 1 of the qualifying exam, the student has to achieve a cumulative GPA of 3.5 or higher with no course grade less than B, calculated based on five selected courses as follows:

1. NSE 531 or equivalent approved by the exam committee;
2. Four out of five OSU graduate-level courses selected and approved by the exam committee with a minimum of 12 credits.

The NSE 531 equivalent course can be a graduate or undergraduate course from OSU or another institute deemed appropriate by the student's exam committee. In addition, five OSU graduate-level courses must be selected, declared and approved by the exam committee in the first term of enrollment in the PhD program. Once submitted, the list of selected courses cannot be changed unless a course on the list is no longer offered. Four courses with the highest grades from this list of selected courses will be used for assessment in this part of the qualifying examination. No course can be used more than once in calculating the cumulative GPA.

If the cumulative GPA calculated as above falls below 3.5, or any of the selected courses has a grade less than B, the exam committee has to review the student's academic performance and determine if the student has demonstrated proficiency in core coursework. A negative outcome of this review will lead to the student's dismissal from the PhD program.

Passing Part 1 of the qualifying exam is required to advance to Part 2: Competency in research.

Part 2: Competency in research

To complete Part 2 of the qualifying exam, the student must:

1. **Generate a written summary.** Each student shall receive an assignment from the major advisor four weeks before the date of the oral presentation. The content of this assignment is determined by the major advisor, which could be but are not limited to:

 (a) Critiquing a journal paper;

 (b) Conducting literature research on a given topic;

 (c) Producing a research proposal within a specified topic area.

 Use standard 8.5" X 11" paper with 1-inch margins (top, bottom, left, right). Use a font size no smaller than Times New Roman 11 point. Use single column. This summary has to be submitted to the exam committee at least one week before the oral presentation.

2. **Give an oral presentation.** Each student is expected to give an oral presentation within four weeks from receiving the assignment. The presentation should not exceed 60 minutes.
3. **Answer questions from the exam committee.** Following the oral presentation, the exam committee will ask questions pertaining to the student's research field or the specifics of the assignment. The questions will probe your research capability and the fundamentals of nuclear science and engineering. This section of the exam should not exceed 60 minutes.

It is the student’s responsibility to survey the exam committee, choose a date for the oral exam and notify the NSE Graduate Committee. Shortly after the oral exam, the exam committee will assign a grade of pass or fail. The major professor will provide feedback to the student and notify the NSE Graduate Committee the exam result.

In Part 2 of the qualifying exam, students will be scored on the following:

1. The ability to think logically, express a point of view and defend it both orally and in a written form;
2. The ability to communicate an understanding of the core content of your research area;
3. The scientific writing skills.

If the student fails this part of the qualifying examination, one additional attempt will be allowed. In this case, the student has to retake the exam within *six months* from the date of the original oral examination. The second unsuccessful trial will lead to the student's dismissal from the PhD program.

7.5 Preliminary Oral Examination

PhD candidates will present their proposed dissertation research as part of their Preliminary Examination. This formal seminar is to be a presentation of their planned research and a review of the literature supporting this plan. In preparation for the Preliminary Examination, the student will prepare a written dissertation proposal and present this written proposal to their doctoral committee at least two weeks prior to the exam. This proposal will include a thorough literature review, an outline of the proposed research project, and a description of the importance of the research with a perspective on the current state of the area of specialty.

As a means for giving the student’s committee an early chance to help direct the doctoral research, the preliminary examination will start with the student presenting their written dissertation proposal and their proposed research direction. This will be a 30 minute (or amount of time determined by the major professor) presentation by the student on his/her proposed research. The committee will then discuss this research proposal with the student. The discussion is meant to identify strengths and weaknesses within the student’s preparation and proposal. It is intended to be a constructive critique of the progress achieved to date, as well as to provide focus for the student's research. The oral preliminary examination will be scheduled for a minimum of two hours.

The remaining portion of the examination will focus on the student’s basic understanding of Nuclear Engineering or Health Physics (as covered in the qualifying examination) and the minor area(s), as well as all of the courses that the student has taken at OSU.

At least one complete academic term must elapse between the time of the preliminary oral examination and the final oral examination. If more than five years elapse between these two examinations, the candidate will be required to take another Preliminary Examination.

7.6 Doctoral Dissertation

The dissertation should be a significant research contribution publishable in a recognized professional journal and should demonstrate the student’s competence in conducting fundamental research. It must represent a significant contribution to the existing body of knowledge in Nuclear Engineering or Health Physics. The research topic must be approved by the student’s Graduate Committee and the dissertation title must be approved by the Graduate School. The dissertation must be based on the candidate’s own investigation,
show a mastery of the literature of the subject, and be written in credible literary form. In order to have the
efforts of the student recognized outside of OSU, the student must, in addition to dissertation requirements,
prepare a paper which is suitable for submission to a recognized, scientific peer-reviewed journal. A final
draft of the dissertation must be presented to the student’s doctoral committee at least two weeks prior to
the final oral examination. A thesis guide is available at the Graduate School website:
http://oregonstate.edu/dept/grad_school/thesis.php

7.7 Final Oral Examinations

The dissertation defense will be scheduled for two hours. The student is expected to defend his/her disser-
tation research and display a mastery of knowledge in his/her chosen field.

7.8 Procedures Leading to the Doctoral Degree

Below is a brief list of the steps required to obtain the PhD degree. The student should also become familiar
with the specific and detailed information contained in the OSU Catalog and the Graduate School website,
as well as NSE requirements. Program meetings, preliminary oral exams, and final oral exams may be
scheduled only during periods when classes are in session (including finals week).
<table>
<thead>
<tr>
<th>Check Box</th>
<th>Item #</th>
<th>Step</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Generate Grad Council Rep (GCR) list (Grad School website) and contact those people until you find someone willing to serve as your GCR</td>
<td>During first term</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Form Doctoral Committee in consultation with major professor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Schedule doctoral program meeting with all committee members; reserve a RC room w/the RC receptionist</td>
<td>Before completing 18 hours</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Doctoral program meeting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>File Doctoral Program of Study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Pass the PhD Qualifying Exam. Upon passing, the student becomes a PhD “Candidate”</td>
<td>Prior to 18 months after matriculation</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Schedule the preliminary oral examination w/your committee</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Reserve a room in the RC w/the receptionist for the preliminary oral examination</td>
<td>AT LEAST 2 weeks prior to preliminary oral examination</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Pick up copies of final oral examination scoring guide from student liaison</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Fill out Exam Scheduling Form (Grad School website)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Submit written dissertation research proposal to the entire Committee (with advisor’s approval)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Preliminary oral examination</td>
<td>NO LATER THAN 6 months after passing qualifying exam</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Hold regular meetings with your Committee to keep them updated on your progress</td>
<td>Throughout your degree progression (at least once a year)</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Read the Thesis Guide on the Grad School’s website</td>
<td>Prior to starting your dissertation</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Compare Doctoral Program of Study form and transcripts for consistency</td>
<td>1 term before your intended graduation term</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>File Petition to Change Program form if needed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>File a Diploma Application (Grad School website)</td>
<td>15 weeks prior to final oral examination</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Complete final draft of your dissertation and submit it to your major professor for review and approval</td>
<td>By the start of your last term</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Schedule the final oral examination w/your committee</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Reserve a room with the RC receptionist</td>
<td>AT LEAST 2 weeks prior to final oral examination</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Fill out Exam Scheduling Form (Grad School website)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Submit thesis pretext pages to the Graduate School</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Submit a final draft dissertation to all committee members (with advisor’s approval)</td>
<td></td>
</tr>
<tr>
<td>Check Box</td>
<td>Item #</td>
<td>Step</td>
<td>Timing</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>Confirm final oral examination appointment with the Grad School (make sure it's on their calendar!)</td>
<td>1 week after submitting exam scheduling form</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Email defense poster and information to Jens Odegaard (day, time, room, topic, name etc.) jens.odegaard@oregonstate.edu</td>
<td>AT LEAST 1 week prior to final oral examination</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Remind Committee of the final oral examination</td>
<td>2 days prior to final oral examination</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>Final oral examination</td>
<td>NO EARLIER THAN 1 term after passing preliminary oral examination</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Complete dissertation revisions, have major professor approve & sign final version, and get 2 copies bound for the Department</td>
<td>Within 6 wks of the defense or by the first day of the next term, whichever is first; a missed deadline will require you to register for an additional 3 credits, no exceptions!</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>Submit final copies (Grad School)</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Procedures for PhD Students
7.9 Notes About the Checksheet

The Doctoral Program of Study form is located on the Graduate School’s website. You should work with your major professor to fill out the Program of Study form. Your committee needs to approve the Program of Study before you can submit it to the Graduate School.

For various reasons, differences often occur between the classes you plan to take and what you actually end up taking to earn your degree. When you graduate, the Program of Study must be 100% accurate. You should compare the Program of Study on file with your transcripts, which can be viewed by logging into Student Online Services. Make corrections by filling out the Petition to Change the Program of Study form at least one term before you plan to defend. You do not have to fill it out each time you deviate from your original program; however, you need to keep your committee informed of any and all changes since they are the ones who must approve your final Program.

Give yourself and your committee members a lot of time to plan for the defense date. Sometimes committee members will be on sabbatical leave during the term in which you plan to defend. You should check with your committee members about such leaves far in advance to make better plans. Planning ahead is especially important, if you need to change a committee member for any reason.

The Diploma Application must be filed no later than week two of the term in which you defend. However, it is okay to fill out the form a term or two early. If you need to change your end term after you fill out the Diploma Application, just fill out the application again.

When you confirm your defense exam date with the Graduate School, you are essentially placing your exam on their calendar. If they are not aware of your defense date, even if you filled out all the paperwork, you will not be able to defend and will have to reschedule.

The Graduate School has a Thesis Guide on their website, which explains the specific criteria for library copies of the dissertation. Students are encouraged to review the site, listed below, before starting to write the thesis to ensure understanding of the formatting, procedures, and deadlines: